Browse > Article
http://dx.doi.org/10.5423/PPJ.SI.02.2013.0021

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper  

Lim, Jong-Hui (School of Biotechnology, Yeungnam University)
Kim, Sang-Dal (School of Biotechnology, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.29, no.2, 2013 , pp. 201-208 More about this Journal
Abstract
Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.
Keywords
drought stress tolerance; PGPR; pepper;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dardanelli, M. S., Fernandez de Cordoba, F. J., Rosario Espuny, M., Rodriguez Carvajal, M. A., Soria Díaz, M. E., Gil, Serrano A. M., Okon, Y. and Megias, M. 2008. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol. Biochem. 40:2713−2721.
2 Espartero, J., Pintor-Toro, J. A. and Pardo, J. M. 1994. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol. Biol. 25:217−27.
3 Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36:184−189.
4 German, M. A., Burdman, S., Okon, Y. and Kigel, J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol. Fertil. Soils 32:259-264.   DOI
5 Liang, P. and Pardee, A. B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967−971.
6 Lim, J. H. and Kim, S. D. 2009. Synergistic plant growth promotion by indigenous auxin-producing PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. J. Kor. Soc. Appl. Biol. Chem. 52:231−538.
7 Bleecker, A. B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16:1−18.
8 Lim, J. H., Ahn, C. H., Jeong, H. Y., Kim, Y. H. and Kim, S. D. 2011. Synergistic plant growth promotion by indigenous auxin-producing PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. J. Kor. Soc. Appl. Biol. Chem. 54:221−228.
9 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265−275.
10 Arkhipova, T. N., Prinsen, E.,Veselov, S. U., Martinenko, E. V., Melentiev, A. I. and Kudoyarova, G. R. 2007. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305−315.   DOI
11 Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V. and Voinikov, V. K. 2002. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2:5.   DOI   ScienceOn
12 Cheng, Z., Park, E. and Glick, B. R. 2007. 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J. Microbiol. 53:912−918.
13 Creus, C. M., Sueldo, R. J. and Barassi, C. A. 1998. Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can. J. Bot. 76:238-244.
14 Choi, K. H., Hong, C. B. and Kim, W. T. 2002. Isolation and characterization of drought-induced cDNA clones from hot pepper (Capsicum annuum). J. Plant Biol. 45:212−218.
15 Golldack, D. and Dietz, K.-J. 2001. Salt-induced expression of the vacuolar $H^{+}$-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol. 125:1643−1654.
16 Kandasamy, S., Loganathan, K., Muthuraj, R., Duraisamy, S., Seetharaman, S., Thiruvengadam, R., Ponnusamy, B. and Ramasamy, S. 2009. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci. 7:47.   DOI   ScienceOn
17 Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60:579−598.
18 Jang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1−4.
19 Jung, H. K., Kim, J. R., Woo, S. M. and Kim, S. D. 2006. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50:23−28.   과학기술학회마을   DOI
20 Kim, D. S., Cho, D. S., Park, W. M., Na, H. J. and Nam, H. G. 2006. Proteomic pattern-based analyses of light responses in Arabidopsis thaliana wild-type and photoreceptor mutants. Proteomics 6:3040−3049.
21 Kim, Y. S., Choi, D., Lee, M. M., Lee, S. H. and Kim, W. T. 1998. Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol. 39:565−573.
22 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259−1266.
23 Kloepper, J. W., Gutierrez-Estrada, A. and Mclnory, J. A. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159−167.
24 Saravanakumar, D. and Samiyappan, R. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J. Appl. Microbiol. 102:1283−1292.
25 Park, J. A., Cho, S. K., Kim, J. E., Chung, H. S., Hong, J. P., Hwang, B., Hong, C. B. and Kim, W. T. 2003. Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang). Plant Sci. 165:471−481.
26 Penrose, D. M. and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol. Plant. 118:10−15.
27 Sarkar, N. K., Kim, Y. K. and Grover, A. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393.   DOI   ScienceOn
28 Siddikee, M. A., Glick, B. R., Chauhan, P. S., Yim, W. J. and Sa, T. 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49:427−434.
29 Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A. and Wilhelm, E. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can. J. Microbiol. 53:1195−1202.
30 Yuwono, T., Handayani, D. and Soedarsono, J. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust. J. Agr. Res. 56:715-721.   DOI   ScienceOn
31 Glick, B. R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56:291−312.
32 Grichko, V. P. and Glick, B. R. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39:11−17.
33 Ortiz-Castro, R., Contreras-Cornejo, H. A., Macias-Rodriguez, L. and Lopez-Bucio, J. 2009. The role of microbial signals in plant growth and development. Plant Signal. Behav. 4:701−712.
34 Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166:525-530.   DOI   ScienceOn
35 O'Donnell, P. J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H. M. O. and Bowles, D. J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914−1917.   DOI   ScienceOn