• 제목/요약/키워드: pepper plant (Capsicum annuum).

검색결과 307건 처리시간 0.031초

Expression and Promoter Analyses of Pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during Plant Defense Response to Incompatible Pathogen

  • Chung, Eun-Sook;Oh, Sang-Keun;Park, Jeong-Mee;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.76-89
    • /
    • 2007
  • CaCDPK4, a full-length cDNA clone encoding Capsicum annuum calcium-dependent protein kinase 4, was isolated from chili pepper (Capsicum annuum L.). Deduced amino acid sequence of CaCDPK4 shares the highest homology with tobacco NpCDPK8 and chickpea CaCDPK2 with 79% identity. Genomic blot analyses revealed that CaCDPK4 is present as a single copy in pepper genome, but it belongs to a multigene family. CaCDPK4 was highly induced when pepper plants were inoculated with an incompatible bacterial pathogen. Induced levels of CaCDPK4 transcripts were also detected in pepper leaves by the treatment of ethephon, an ethylene-inducing agent, and high-salt stress condition. The bacterial-expressed GST-CaCDPK4 protein showed to retain the autophosphorylation activity in vitro. GUS expression driven by CaCDPK4 promoter was examined in transgenic Arabidopsis containing transcriptional fusion of CaCDPK4 promoter. GUS expression under CaCDPK4 promoter was strong in the root and veins of the seedlings. GW (-1965) and D3 (-1377) promoters conferred on GUS expression in response to inoculation of an incompatible bacterial pathogen, but D4-GUS (-913) and DS-GUS (-833) did not. Taken together, our results suggest that CaCDPK4 can be implicated on signal transduction pathway of defense response against an incompatible bacterial pathogen in pepper.

Erwinia carotovora subsp. carotovora에 의한 고추 마디 무름병 (Bacterial Node Soft Rot of Pepper (Capsicum annuum L.) Caused by Erwinia carotovora subsp. carotovora)

  • 정기채;임진우;김승한;임양숙;김종완
    • 한국식물병리학회지
    • /
    • 제14권6호
    • /
    • pp.741-743
    • /
    • 1998
  • A bacterial disease of pepper (Capsicum annuum L.) that rooted the stem nodes to black was found in pepper plants which cultivated in plastic house at Chungdo, Kyungpook, Korea in March, 1998. Bacterial isolates derived from the diseased peppers were pathogenic to potato, eggplant and Chinese cabbage but, was not pathogenic to chrysanthemum by artificial inoculation. On the basis of bacteriological characteristics and pathogenicity test on host plants, the causal organism of the node soft rot of pepper is identified as Erwinia carotovora subsp. carotovora and the name of disease is proposed as bacterial node soft rot of pepper.

  • PDF

Distribution and Antifungal Activity of Endophytic Fungi in Different Growth Stages of Chili Pepper (Capsicum annuum L.) in Korea

  • Paul, Narayan Chandra;Deng, Jian Xin;Sang, Hyun-Kyu;Choi, Young-Phil;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.10-19
    • /
    • 2012
  • This study investigated the distribution of endophytic fungi obtained from the surface sterilized tissues of leaves, stems and roots of chili pepper ($Capsicum$ $annuum$ L.) plants in seedling, flowering and fruiting stages in Korea and their antifungal activity. A total of 481 isolates were recovered and were identified using molecular techniques. Based on rDNA ITS gene sequence and phylogenetic analysis, 21 fungal genera were characterized, belonging to 16 Ascomycota and 5 Basidiomycota. $Penicillium$ in seedling stage, $Fusarium$ in flowering stage, $Colletotrichum$ followed by $Fusarium$, $Alternaria$ and $Xylaria$ in fruiting stage was predominant and $Alternaria$, $Cladosporium$ and $Fusarium$ were common in all growth stages. Among 481 endophytes 90 phenotypes were evaluated for the antimicrobial activity against three major pathogens ($Phytophthora$ $capsici$, $Colletotrichum$ $acutatum$ and $Fusarium$ $oxysporum$) of chili pepper. Among them 16 isolates inhibited the growth of at least one test microorganisms. Three strains showed a broad spectrum antifungal activity and displayed strong inhibition against chili pepper pathogenic fungi.

Cleaved Amplified Polymorphic Sequence and Amplified Fragment Length Polymorphism Markers Linked to the Fertility Restorer Gene in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Sun;Kim, Dong Hwan;Yoo, Jae Hyoung;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.135-140
    • /
    • 2006
  • Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that suppress CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rfl-inked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during $F_1$ hybrid seed production and breeding programs in pepper.

Molecular Cloning of a Pepper Gene that Is Homologous to SELF-PRUNING

  • Kim, Dong Hwan;Han, Myeong Suk;Cho, Hyun Wooh;Jo, Yeong Deuk;Cho, Myeong Cheoul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.89-96
    • /
    • 2006
  • "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADIALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato.

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.