DOI QR코드

DOI QR Code

Expression and Promoter Analyses of Pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during Plant Defense Response to Incompatible Pathogen

  • Chung, Eun-Sook (BK21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Oh, Sang-Keun (Plant Genome Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Park, Jeong-Mee (Plant Genome Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Choi, Do-Il (Department of Plant Sciences, Seoul National University)
  • Published : 2007.06.30

Abstract

CaCDPK4, a full-length cDNA clone encoding Capsicum annuum calcium-dependent protein kinase 4, was isolated from chili pepper (Capsicum annuum L.). Deduced amino acid sequence of CaCDPK4 shares the highest homology with tobacco NpCDPK8 and chickpea CaCDPK2 with 79% identity. Genomic blot analyses revealed that CaCDPK4 is present as a single copy in pepper genome, but it belongs to a multigene family. CaCDPK4 was highly induced when pepper plants were inoculated with an incompatible bacterial pathogen. Induced levels of CaCDPK4 transcripts were also detected in pepper leaves by the treatment of ethephon, an ethylene-inducing agent, and high-salt stress condition. The bacterial-expressed GST-CaCDPK4 protein showed to retain the autophosphorylation activity in vitro. GUS expression driven by CaCDPK4 promoter was examined in transgenic Arabidopsis containing transcriptional fusion of CaCDPK4 promoter. GUS expression under CaCDPK4 promoter was strong in the root and veins of the seedlings. GW (-1965) and D3 (-1377) promoters conferred on GUS expression in response to inoculation of an incompatible bacterial pathogen, but D4-GUS (-913) and DS-GUS (-833) did not. Taken together, our results suggest that CaCDPK4 can be implicated on signal transduction pathway of defense response against an incompatible bacterial pathogen in pepper.

Keywords

References

  1. An, G, Ebert, P. R., Mitra, A. and Ha, S. B. 1988. Binary vector. In: Plant Molecular Biology Manual. A3. ed. by S. B. Gelvin, R. A. Schilperoot and D. P. S. Verma, pp. 1-19. Kluwer Academic Publishers
  2. Arabidopsis Genome Initiative. 2000. Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:820-826 https://doi.org/10.1038/35048706
  3. Asano, T., Tanaka, N., Yang, G, Hayashi, N. and Komatsu, S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46:356-366 https://doi.org/10.1093/pcp/pci035
  4. Botella, J. R., Arteca, J. M., Somodevilla, M. and Arteca, R. N. 1996. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol. Biol. 30:1129-1137 https://doi.org/10.1007/BF00019547
  5. Bray, E. A. 1993. Molecular responses to water deficit. Plant Physiol. 103:1035-1040 https://doi.org/10.1104/pp.103.4.1035
  6. Chehab, E. W., Patharkar, O. R., Hegeman, A. D., Taybi, T. and Cushman, J. C. 2004. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium dependent protein kinase from ice plant. Plant Physiol. 135:1430-1446 https://doi.org/10.1104/pp.103.035238
  7. Cheng, S. H., Willman, M. R., Chen, H. C. and Sheen, J. 2002. Calcium signaling through protein kinases. The Arabidopsis Calcium-dependent protein kinase gene family. Plant Physiol. 129:49-55
  8. Chico, J. M., Raices, M., Tellez-Inon, M. T. and Ulloa, R. M. 2002. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol. 128:256-270 https://doi.org/10.1104/pp.010649
  9. Choi, D., Kim, H. M., Yun, H. K., Park, J. A., Kim, W. T. and Bok, S. H. 1996. Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco moasaic virus infection. Plant Physiol. 112:353-359 https://doi.org/10.1104/pp.112.1.353
  10. Chung, E., Kim, S. Y, Yi, S. and Choi, D. 2003. Capsicum annuum dehydrin, an osmotic-stress gene in chili pepper plants. Mol. Cells 15:327-332
  11. Chung, E., Park, J.M., Oh, S.-K., Joung, Y.H., Lee, S. and Choi, D. 2004. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220:286-295 https://doi.org/10.1007/s00425-004-1372-9
  12. Church, G. M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Aca. Sci. USA 81:1991-1995
  13. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  14. Dammann, C., Ichida, A., Hong, B., Romanowsky, S. M., Hrabak, E. M., Harmon, A. C., Pickard, B. G. and Harper, J. F. 2003. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol. 132:1840-1848 https://doi.org/10.1104/pp.103.020008
  15. Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19-21 https://doi.org/10.1007/BF02712670
  16. Ecker, J. R. 1995. The ethylene signal transduction pathway in plants. Science 268:667-675 https://doi.org/10.1126/science.7732375
  17. Evans, N. H., McAinsh, M. R. and Hetherington, A. M. 2001. Calcium oscillations in higher plants. Curr. Opin. Plant Biol. 4:415-420 https://doi.org/10.1016/S1369-5266(00)00194-1
  18. Harmon, A. C., Putnam-Evans, C. and Cormier, M. J. 1987. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. 83:830-837 https://doi.org/10.1104/pp.83.4.830
  19. Harper, J. F., Huang, J.-F. and Lloyd, S. J. 1994. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochem. 33:7267-7277 https://doi.org/10.1021/bi00189a031
  20. Harper, J. F., Breton, G. and Harmon, A. 2004. Decoding $Ca^{2+}$ sigrials through plant protein kinase. Annu. Rev. Plant Biol. 55:263-288 https://doi.org/10.1146/annurev.arplant.55.031903.141627
  21. Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321-334 https://doi.org/10.1023/A:1026592509060
  22. Hrabak, E. M., Chan, C. W, Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., Kudla, J., Luan, S., Nimmo, H. G, Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J. K. and Harmon, A. C. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132:666-680 https://doi.org/10.1104/pp.102.011999
  23. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W 1987. GUS fusion: ${\beta}$ as a sensitive and versatile gene fusion marker in higher plants. EMBO. J. 6:3901-3907
  24. Kang, J. Y., Choi, H. I., Im, M. Y. and Kim, S. Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343-357 https://doi.org/10.1105/tpc.010362
  25. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of phycocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307
  26. Knight, H., Trewavas, A. J. and Knight, M. R. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12:1067-1078 https://doi.org/10.1046/j.1365-313X.1997.12051067.x
  27. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 https://doi.org/10.1038/227680a0
  28. Lee, S., Kim, S. Y., Chung, E., Joung, Y. H., Pai, H. S., Hur, C. G. and Choi, D. 2004. EST and microarray analyses of pathogen responsive genes in hot pepper (Capsicum annuum L.) nonhost resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct. Integrative Genomics 4:196-205
  29. Lee, S. S., Cho, H. S., Yoon, G. M., Ahn, J.-W., Kim, H.-H., Pai, H.-S. 2003. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 33:825-840
  30. Lu, S. X. and Hrabak, E. M. 2002. An Arabidopsis calciumdependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol. 128:1008-1021 https://doi.org/10.1104/pp.010770
  31. Ludwig, A. A., Romeis, T. and Jones, J. D. G. 2004. CDPK-mediated signalling pathways: specificity and cross-talk. J. Exp. Botany 55:181-188 https://doi.org/10.1093/jxb/erh008
  32. Marcotte, W. R. Jr., Russell, S. H. and Qatrano, R. S. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1:969-976 https://doi.org/10.1105/tpc.1.10.969
  33. Murillo, I., Cordero, E. J. M. and Segundo, B. S. 2001. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Biol. 45:145-158 https://doi.org/10.1023/A:1006430707075
  34. Niggeweg, R., Thurow, C., Weigel, R., Pfitzner, U. and Gatz, C. 2000. Tobacco TGA factors differ with respect to interaction with NPRl, activation potential and DNA-binding properties. Plant Mol. Biol. 42:775-788 https://doi.org/10.1023/A:1006319113205
  35. Notredame, C., Higgins, D. and Heringa, J. 2000. A novel method for multiple sequence alignments. J. Mol. Biol. 302:205-217 https://doi.org/10.1006/jmbi.2000.4042
  36. Oh, S.-K., Park, J. M., Joung, Y. H., Lee, S., Chung, E., Kim, S.-Y., Yu, S. H. and Choi, D. 2005. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens. Mol. Plant Pathol. 6:269-285 https://doi.org/10.1111/j.1364-3703.2005.00284.x
  37. Park, B. K. and Hwang, I. 1999. Identification of hrcC, hrpF, and miaA genes of Xanthomonas campestris pv. glycines 8ra: roles in pathogenicity and inducing hypersensitive response on nonhost plants. Plant Pathol. 15:21-2
  38. Patharkar, O. R. and Cushman, J. C. 2000. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J. 24:679-691 https://doi.org/10.1046/j.1365-313x.2000.00912.x
  39. Prescott, A and Martin, C. 1987. A rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol. Biol. Rep. 4:219-224 https://doi.org/10.1007/BF02675414
  40. Putnam-Evans, C., Harmon, A C., Palevitz, B. A, Fechheimer, M. and Cormier, M. J. 1989. Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil. Cytoskeleton 12: 12-22 https://doi.org/10.1002/cm.970120103
  41. Putnam-Evans, C. L., Harmon, A C. and Cormier, M. J. 1990. Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochem. 29:2488-2495 https://doi.org/10.1021/bi00462a008
  42. Reymond, P. and Farmer, E. E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1 :404-411 https://doi.org/10.1016/S1369-5266(98)80264-1
  43. Roberts, D. M. and Harmon, A C. 1992. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:375-414 https://doi.org/10.1146/annurev.pp.43.060192.002111
  44. Romeis, T., Ludwig, A A, Martin, R. and Jones, J. D. G. 2001. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO. J. 20:5556-5567 https://doi.org/10.1093/emboj/20.20.5556
  45. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. 2000. Over-expression of a single $Ca^{2+}$ -dependent kinase confers both cold and salt/drought tolerance. Plant J. 23:319-327 https://doi.org/10.1046/j.1365-313x.2000.00787.x
  46. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, USA
  47. Sanders, D., Pelloux, J., Brownlee, C. and Harper, J. F. 2002. Calcium at the crossroads of signaling. Plant Cell 14:S401-S417
  48. Satterlee, J. S. and Sussman, M. R. 1998. Unusual membrane-associated protein kinases in higher plants. J. Membrane Biol. 164:205-213 https://doi.org/10.1007/s002329900406
  49. Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N. and Shinozaki, K. 1994. Two genes that encode $Ca^{2+}$ -dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244:331-340
  50. Whalen, M. C., Innes, R. W., Bent, A F. and Staskawicz, B. 1991. Identification of Pseudomonas syringae pathogens of Arabido psis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49-59 https://doi.org/10.1105/tpc.3.1.49
  51. Whitelaw, C. A., Le Huquet, J. A., Thurman, D. A. and Tomsett, A. B. 1997. The isolation and characterization of type II metal-lothionein-like genes from tomato (Lycopersicon esculentum L.). Plant Mol. Biol. 33:503-511 https://doi.org/10.1023/A:1005769121822
  52. Xing, T., Wang, X.-J., Malik, K. and Miki, B. L. 2001. Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol. Plant-Microbe Interact. 14:1261-1264 https://doi.org/10.1094/MPMI.2001.14.10.1261
  53. Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. 2004. The pepper (Capsicum annuum L.) transcription factor, CaPF1, confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136:2862-2874 https://doi.org/10.1104/pp.104.042903
  54. Yoon, G. M., Cho, H. S., Ha, H. J., Liu, J. R. and Pai, H.-S. 1999. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39:991-1001 https://doi.org/10.1023/A:1006170512542
  55. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1539 https://doi.org/10.1105/tpc.13.7.1527

Cited by

  1. Regulation and function of the pepper pectin methylesterase inhibitor (CaPMEI1) gene promoter in defense and ethylene and methyl jasmonate signaling in plants vol.230, pp.6, 2009, https://doi.org/10.1007/s00425-009-1021-4
  2. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants vol.229, pp.2, 2009, https://doi.org/10.1007/s00425-008-0824-z
  3. The Hypersensitive Induced Reaction and Leucine-Rich Repeat Proteins Regulate Plant Cell Death Associated with Disease and Plant Immunity vol.24, pp.1, 2011, https://doi.org/10.1094/MPMI-02-10-0030
  4. Differential Responses to the Combined Stress of Heat and Phytophthora capsici Infection Between Resistant and Susceptible Germplasms of Pepper (Capsicum annuum L.) vol.36, pp.1, 2017, https://doi.org/10.1007/s00344-016-9627-9
  5. MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses vol.92, pp.3, 2017, https://doi.org/10.1080/14620316.2016.1265902
  6. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance vol.227, pp.3, 2008, https://doi.org/10.1007/s00425-007-0637-5
  7. Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis vol.229, pp.2, 2009, https://doi.org/10.1007/s00425-008-0837-7
  8. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
  9. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility vol.228, pp.3, 2008, https://doi.org/10.1007/s00425-008-0752-y
  10. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance vol.228, pp.1, 2008, https://doi.org/10.1007/s00425-008-0719-z
  11. CDPK1 from Ginger Promotes Salinity and Drought Stress Tolerance without Yield Penalty by Improving Growth and Photosynthesis in Nicotiana tabacum vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0076392
  12. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance vol.67, pp.5, 2008, https://doi.org/10.1007/s11103-008-9337-1
  13. Expression Profiling of a Novel Calcium-Dependent Protein Kinase Gene,LeCPK2, from Tomato (Solanum lycopersicum) under Heat and Pathogen-Related Hormones vol.73, pp.11, 2009, https://doi.org/10.1271/bbb.90385
  14. Molecular and cellular control of cell death and defense signaling in pepper vol.241, pp.1, 2015, https://doi.org/10.1007/s00425-014-2171-6