• Title/Summary/Keyword: penetrometer

Search Result 123, Processing Time 0.023 seconds

The Ground Investigation Technique of Railway Using Pagani Cone Test (Pagani Cone Test를 이용한 철도노반 조사 기법 연구)

  • Cho, Eun-Kyung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.792-801
    • /
    • 2016
  • Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are widely used in geotechnical investigation methods for railway roadbed. However, SPT can not be used on the Railway track, since the equipment may contact to the electric lines. However, a portable equipment can be used for geotechnical investigation without electrical hazard. Dynamic Cone Penetrometer (DCP) is one of representative portable equipments. A normal portable DCP has usually not enough driving energy and the rigidity of cone-rod, so it is impossible to investigate the required investigate penetration depth. In this study, The adaptability of Pagani cone test which is one of portable dynamic cone penetrometer is studied and compared with SPT-N data. As a result of this study, the proposed correlation factors between Pagani cone test and SPT-N values after corrections is 1.48 for sandy soil and 1.33 for clayey soil.

Determination of Undrained Shear Strength using Miniature Cone and T-bar Penetrometers for Kaolin Clay (소형콘과 T-bar 관입기를 이용한 카올린 점토의 비배수전단강도 산정에 관한 연구)

  • Sespene, Shemelyn;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.429-438
    • /
    • 2018
  • Cone and T-bar penetrometers have been frequently used to estimate the undrained shear strength of clay. For small-size model tests, miniature penetrometers should be used but their correlation factors have not been well published. In this study, a testing setup was developed to derive empirical factors of the miniature cone and T-bar penetrometers. A 350mm-diameter chamber and kaolin clay were utilized to prepare soil specimens consolidated under four different pre-consolidation pressures controlling undrained shear strength. Two miniature cones with two diameters of 10-mm and 16-mm and a T-bar penetrometer with 10-mm diameter were used to investigate boundary effect, penetration rate effect, and diameter and shape effect. Unconsolidated-undrained triaxial tests were carried out with samples taken from the specimens to measure undrained shear strength. Finally, empirical factors for the penetrometers were constructed to correlate tip resistance to undrained shear strength.

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.

Comparison of Field Bearing Capacity Tests to Evaluate the Field Application of Dynamic Cone Penetrometer Test (동적 콘관입 시험의 현장적용성 평가를 위한 현장 지지력시험 상호 비교 연구)

  • Kim, Boo-Il;Jeon, Sung-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.75-85
    • /
    • 2006
  • Plate Bearing Test(PBT) and California Bearing Ratio Test(CBR) usually have been used to evaluate the bearing capacity of sub-layer in pavement system. However, these tests have shortcomings for which man powers and time are spent greatly. Many researchers proposed a simple Dynamic Cone Penetrometer Test(DCP) to evaluate the bearing capacity of sub-layers in pavement system. This study performed several field bearing capacity tests(DCP, PBT, CBR, FWD) to evaluate field performance of DCP on sub-base and subgrade at four test sections simultaneously. The results showed that DCPI, $M_{FWD}$, and $PBT_K_{30}$ are highly correlated, but CBR and other test are not. This study proposed the following regression models between FWD, DCP, and PBT: $$M_{FWD}=993.10\Big(\frac{1}{DCPI}\Big)+33.95\;R^2=0.77$$ $$M_{FWD}=3.7533K_{30}+23.085\;R^2=0.69$$

  • PDF

Development of an Automatic Soil Hardness Measuring System Mountable on Agricultural Tractors (트랙터 부착형 자동 토양경도 측정 시스템 개발)

  • 이현동;김기대;김찬수;김성환
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-546
    • /
    • 2002
  • In this study an automatic soil hardness measuring system mountable on agricultural tractors was developed to improve the accuracy of manual soil hardness testers by a constant penetrating rate, right direction of the cone-penetrometer and the isolation of vibration from the operator. This was necessary to supply similar experimental condition for performance test of new model and comparative experiment. The results of the study are summaried as follows; 1. The system consisted of a sensing part of soil hardness, a driving part of the measuring system and an attaching part between the tractor and the measuring system. 2. The allowable limit value of the system developed was set to 392N to protect from breaking the serve motor and the coupling used in this system. 3. The driving shaft penetrated into soil by 0.3m to measure soil hardness. The soil hardness was measured at the depth of 0.3m from the soil surface but the penetrating work was stopped and the driving shaft was pulled out to protect the system when the value of the soil hardness was too big on foreign substances like stones or straws. 4. Two values measured by automatic measuring system developed in this research and manual penetrometer were compared by statistics hypothesis testing method. When two people measured the soil hardness at the depth of 0.1 and 0.15m by manual cone penetrometer, there was no relationship between two values by two people but the values at the same depths by automatic measuring system developed showed similarity. The automatic system, therefore, developed in this research was proper for measuring soil hardness.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

A Study on the Comparative Utilization of Cone Penetration Test and Seismic Prospecting (콘관입시험과 탄성파탐사의 비교 이용에 관한 연구)

  • 송무영;김팔규;김연천;류권일
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 1998
  • It is not easy to understand exact soil properties, because soil is nonhomogeneous and anisotropic. There are raany inefficient cases in aspect of time and economy in site survey. So this study tried to analyze the correlation of cone resistance and seismic velocity in order to present an efficient method in ground investigation. A cone penetrometer is frequently used to investigate soil properties, which are especially fit to investigate coastal soft ground. A portable cone penetrometer was used in this research. A portable cone penetrometer has an advantage in investigating the state of soil swiftly and is convenient to manipulate. Also, seismic prospecting is one of the most PoPular methods among geophysical prospecting methods in the estimation of ground properties and its usage is continuously increasing in the survey of soft ground Cone resistance makes a regular group according to stratum in each depth. The results of seismic prospecting show a tendency to have a certain coherence according to the boundary of straturft Therefore, cone resistance and seisrnic prospecting have considerable relations that rnay irnprnve the efficiency of ground investigation.

  • PDF

Bearing Capacity of Pavement Foundation by Waste Lime Material using the Dynamic Cone Pentrometer (동적 콘관입시험기를 이용한 폐석회 혼합 도로노반 성토체의 현장 지지력 평가)

  • Kim, Young-Seok;Hong, Seung-Seo;Bae, Gyu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.927-935
    • /
    • 2011
  • In-situ California Bearing Ratio(CBR) test has been widely used for evaluating the subgrade condition in pavements. However, because the in-situ CBR test is expensive and takes time for operation, it is difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) has been often utilized for estimating the subgrade strength in the field. The purpose of this paper is to determine the relationship between CBR value and DCP index of the embankment constructed with mixtures of soil and waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this field measurement, the geotechnical tests such as field water content, field density, field CBR test, and dynamic cone penetration test were conducted.

Evaluation of Active Layer Depth using Dynamic Cone Penetrometer (동적 콘 관입기를 이용한 활동층 심도평가)

  • Hong, Won-Taek;Kang, Seonghun;Park, Keunbo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • An active layer distributed on surface of an extreme cold region causes a frost heave by repeating the freezing and thawing according to the seasonal temperature change. Since the height of frost heave is greatly affected by the thickness of active layer, an accurate evaluation of the thickness of active layer is necessary for the safe design and construction of the infrastructure in the extreme cold region. In this study, dynamic cone penetrometer, which is miniaturized in-situ penetration device, is applied for the evaluation of active layer depth distribution. As the application tests, two dynamic cone penetration tests were conducted on the study sites located in Solomon and Alaska. In addition, ground temperature variations were obtained. As the results of the application tests, the depth of interface between the active layer and the permafrost was evaluated from the difference in dynamic cone penetration indexes of the active layer and the permafrost, and a layer was detected around the interface considered as an ice lens layer. Also, the interface depths between the above zero and the below zero temperature determined from the ground temperature variations correspond with the interface depths evaluated from the dynamic cone penetration tests. This study demonstrates that the dynamic cone penetrometer may be a useful tool for the evaluation of the active layer in the extreme cold region.

Use of Dynamic Cone Penetrometer and Light-Weight Deflectometer for Quality Control on Subgrade Base (토공사 다짐품질 관리를 위한 동적콘관입시험 및 소형충격재하시험의 활용에 관한 연구)

  • Baek, Sung-Ha;Cho, Jin-Woo;Kim, Namgyu;Kim, Jin-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.55-67
    • /
    • 2022
  • This study applied the dynamic cone penetrometer test (DCPT) and light-weight deflectometer test (LWDT) to the quality control of subgrade base by performing DCPT, LWDT, and plate load test (PLT) at two earthwork sites. Although DCPT and LWDT were performed under the same conditions, the results showed significant variation with the test location. Because the measured value at the time of the initial blow, which varies depending on the test location, significantly influenced the test result. Thus, it was appropriate to ignore the first two blows as preliminary blows and use subsequent measurements as quality control indicators. In addition, DCPT, LWDT, and PLT results showed a high correlation under the same conditions. Especially regression analyses using averaged data for each experiment condition tended to yield significantly improved R2 values over individual point data sets. This indicates that average DCPT and LWDT values at various adjacent locations are better quality control indicators for subgrade bases than individual point values.