DOI QR코드

DOI QR Code

Use of Dynamic Cone Penetrometer and Light-Weight Deflectometer for Quality Control on Subgrade Base

토공사 다짐품질 관리를 위한 동적콘관입시험 및 소형충격재하시험의 활용에 관한 연구

  • Baek, Sung-Ha (School of Civil and Environmental Engineering & Construction Engineering Research Institute, Hankyong National Univ.) ;
  • Cho, Jin-Woo (Korea Institute of Civil Engr. and Building Tech.) ;
  • Kim, Namgyu (Korea Institute of Civil Engr. and Building Tech.) ;
  • Kim, Jin-Young (Korea Institute of Civil Engr. and Building Tech.)
  • 백성하 (한경대학교 건설환경공학부) ;
  • 조진우 (한국건설기술연구원 지반연구본부) ;
  • 김남규 (한국건설기술연구원 연구전략기획본부) ;
  • 김진영 (한국건설기술연구원 지반연구본부)
  • Received : 2022.10.13
  • Accepted : 2022.10.22
  • Published : 2022.11.30

Abstract

This study applied the dynamic cone penetrometer test (DCPT) and light-weight deflectometer test (LWDT) to the quality control of subgrade base by performing DCPT, LWDT, and plate load test (PLT) at two earthwork sites. Although DCPT and LWDT were performed under the same conditions, the results showed significant variation with the test location. Because the measured value at the time of the initial blow, which varies depending on the test location, significantly influenced the test result. Thus, it was appropriate to ignore the first two blows as preliminary blows and use subsequent measurements as quality control indicators. In addition, DCPT, LWDT, and PLT results showed a high correlation under the same conditions. Especially regression analyses using averaged data for each experiment condition tended to yield significantly improved R2 values over individual point data sets. This indicates that average DCPT and LWDT values at various adjacent locations are better quality control indicators for subgrade bases than individual point values.

본 연구에서는 동적콘관입시험(dynamic cone penetrometer test, DCPT)과 소형충격재하시험(light weight deflectometer test, LWDT)을 다짐품질 관리에 적용하기 위해서, 서로 다른 성토재료를 사용하는 국내의 두 토공사 현장을 대상으로 DCPT, LWDT, 평판재하시험(plate load test, PLT)을 수행했다. 동일한 조건에서 수행되었음에도 DCPT와 LWDT 결과는 위치에 따라 변동성이 매우 컸다. 이는 위치에 따라 변동성이 큰 초기 타격 시의 측정값이 시험 결과에 큰 영향을 주었기 때문으로, 두 번째 타격까지를 예비타격으로 간주하고 이후 측정값을 바탕으로 도출된 결과를 다짐품질 지표로 활용하는 것이 적절한 것으로 나타났다. 또한 동일한 시험 조건에서 수행된 DCPT, LWDT, PLT 결과는 서로 높은 상관성을 보였다. 특히, 일점 분석(individual point analysis)보다, 평균값 분석(average point analysis) 시 상관성이 향상되는 것으로 나타나, 인접한 여러 위치에서 수행된 DCPT 및 LWDT 결과의 평균값을 다짐품질 지표로 활용하는 것이 적절할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21SMIP-A157130-02).

References

  1. Alshibli, K. A., Abu-Farsakh, M., and Seyman, E. (2005), Laboratory Evaluation of the Geogauge and Light Falling Weight Deflectometer as Construction Control Tools, Journal of materials in civil engineering, Vol.17, No.5, pp.560-569. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(560)
  2. ASTM D1557-02 (2009), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
  3. ASTM D6951-09 (2015), Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications.
  4. ASTM E2593-07 (2020), Standard Test Method For Measuring Deflections With A Light Weight Deflectometer (LWD).
  5. Baek, H.G., Kang, S.H., and Seo, J.W. (2015), An Earthwork Districting Model for Large Construction Projects, Journal of the Korean Society of Civil Engineers, Vol.35, No.3, pp.715-723. https://doi.org/10.12652/Ksce.2015.35.3.0715
  6. Baek, S.H., Kim, J.Y., Cho, J.W., Kim, N., Jeong, Y.H., and Choi, C. (2020), Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology, Journal of the Korean Geotechnical Society, Vol.36, No.12, pp.45-56.
  7. Choi, C., Jeong, Y.H., Baek, S.H., Kim, J.Y., Kim, N., and Cho, J.W. (2021), A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control, Journal of the Korean Geotechnical Society, Vol.37, No.9, pp.25-36.
  8. Fleming, P.R., Frost, M.W., and Lambert, J.P. (2007), Review of Lightweight Deflectometer for Routine In Situ Assessment of Pavement Material Stiffness, Transportation Research Record No. 2004, Transportation Research Board, Washington, D.C., USA.
  9. Fleming, P. R., Frost, M.W., and Rogers, C. (2000), A Comparison of Devices for Measuring Stiffness In-situ", Proc., Unbound Aggregates in Road Construction, UNBAR 5, Dawson, A.R., ed., Balkema, Rotterdam, pp.193-200.
  10. Hildebrand, G. (2003), Comparison of Various Types of Bearing Capacity Equipment, Nordic Road and Transportation Research, 15(3), Danish Road Directorate, pp.12-14.
  11. Kessler, K. (2009), Use of DCP (Dynamic Cone Penetrometer) and LWD (Light Weight Deflectometer) for QC/QA on Subgrade and Aggregate Base, Material Design, Construction, Maintenance, and Testing of Pavements: Selected Papers from the 2009 GeoHunan International Conference.
  12. Korea Institute of Construction Technology (2018), Technical Demand Study for Automation of Smart Earthwork to Improve Construction Productivity (KICT 2018-088).
  13. KS F 2307 (2017), Standard test method for standard penetration test.
  14. KS F 2310 (2020), Standard test method for plate load test of road construction.
  15. KS F 2311 (2016), Standard test method for density of soil in place by the sand cone method.
  16. Kumar, R. and Adigopula, V. K. (2017), A Correlation Between LWD Backcalculated Moduli with Dynamic Cone Penetrometer Test Results for Subgrade Layer, Transportation research board 96th Annual meeting, Washington (No. 17-04169).
  17. Livneh, M. and Goldberg, Y. (2001), Quality Assessment during Road Formation and Foundation Construction: Use of Falling-weight Deflectometer and Light Drop Weight, Transportation Research Record No. 1755, Transportation Research Board, Washington D.C., pp.69-77.
  18. Meehan, C. L., Cacciola, D. V., Tehrani, F. S., and Baker III, W. J. (2017), Assessing Soil Compaction Using Continuous Compaction Control and Location-specific in Situ Tests, Automation in Construction, Vol.73, pp.31-44. https://doi.org/10.1016/j.autcon.2016.08.017
  19. Meehan, C.L., Tehrani, F.S., and Vahedifard, F. (2012), A Comparison of Density-based and Modulus-based in Situ Test Measurements for Compaction Control, Geotechnical Testing Journal, Vol.35, No.3, pp.387-399. https://doi.org/10.1520/GTJ103479
  20. Ministry of Land, Infrastructure and Transport (2017), Construction Guidelines for Road Pavement Construction.
  21. Ministry of Land, Infrastructure and Transport (2016), Korean Construction Specification for Earthworks (KCS 20 20 : 2016).
  22. Mitchell, J.K. (1982), Soil Improvement - State-of-the-art, Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Stockholm, June, Vol.4, pp.509-565.
  23. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M. (2008), Application of the Dynamic Cone Penetrometer (DCP) for Determination of the Engineering Parameters of Sandy Soils, Engineering Geology, No.101, pp.195-203.
  24. Nazzal, M. D., Abu-Farsakh, M. Y., Alshibli, K., and Mohammad, L. (2007), Evaluating the Light Falling Weight Deflectometer Device for in Situ Measurement of Elastic Modulus of Pavement Layers, Transportation Research Record, No.2016, pp.13-22.
  25. Park, S.S. and Choi, H.S. (2009), Evaluation of Sand Replacement Method for Determination of Soil Density, Journal of the Korean Geotechnical Society, Vol.25, No.5, pp.47-52.
  26. Powell, W. D., Potter, J. F., Mayhew, H. C., and Nunn, M. E. (1984), The structural design of bituminous roads (No. LR 1132 Monograph).
  27. Siekmeier, J., Pinta, C., Merth, S., Jensen, J., Davich, P., Camargo, F. F., and Beyer, M. (2009), Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance (No. MN/RC 2009-12). Minnesota. Dept. of Transportation. Office of Materials and Road Research.
  28. Tan, Danielle, Kimberly Hill, and Lev Khazanovich. (2014), "Quantifying Moisture Effects in dcp and lwd Tests Using Unsaturated Mechanics", Minnesota Department of Transportation Research Services & Library, MN/RC 2014-13.
  29. Tehrani, F.S. and Meehan, C.L. (2010), The Effect of Water Content on Light Weight Deflectometer Measurements, Proceeding of GeoFlorida 2010: Advances in Analysis, Modeling & Design, Geotechnical Special Publication No. 199, ASCE, Reston, VA 2010, pp.930-939.