DOI QR코드

DOI QR Code

Determination of Undrained Shear Strength using Miniature Cone and T-bar Penetrometers for Kaolin Clay

소형콘과 T-bar 관입기를 이용한 카올린 점토의 비배수전단강도 산정에 관한 연구

  • ;
  • 추연욱 (공주대학교 건설환경공학부)
  • Received : 2016.12.13
  • Accepted : 2018.04.09
  • Published : 2018.06.01

Abstract

Cone and T-bar penetrometers have been frequently used to estimate the undrained shear strength of clay. For small-size model tests, miniature penetrometers should be used but their correlation factors have not been well published. In this study, a testing setup was developed to derive empirical factors of the miniature cone and T-bar penetrometers. A 350mm-diameter chamber and kaolin clay were utilized to prepare soil specimens consolidated under four different pre-consolidation pressures controlling undrained shear strength. Two miniature cones with two diameters of 10-mm and 16-mm and a T-bar penetrometer with 10-mm diameter were used to investigate boundary effect, penetration rate effect, and diameter and shape effect. Unconsolidated-undrained triaxial tests were carried out with samples taken from the specimens to measure undrained shear strength. Finally, empirical factors for the penetrometers were constructed to correlate tip resistance to undrained shear strength.

원추형콘과 T-bar 관입시험기는 점토의 비배수전단강도를 측정하기 위해 널리 사용된다. 축소모형시험의 경우 소형관입시험기가 사용되어야 하지만 경험상관계수에 대해 발표된 자료가 부족하다. 본 연구에서는 소형콘과 소형T-bar 관입시험기의 경험상관계수를 도출하기 위한 시험시스템을 구축하였고, 카올린점토에 대하여 실험을 수행하였다. 직경 350mm의 강재원형챔버를 사용하여 4개의 모형지반을 조성하였고, 각 모형지반은 다른 선행압밀응력에서 압밀하여 비배수전단강도를 조절하였다. 경계면 효과, 관입속도, 직경 및 형상의 영향을 확인하기 위하여 다른 직경을 가진 두 직경의 소형콘(10mm, 16mm)과 직경 10mm T-bar를 이용하여 시험을 수행하였다. 또한 관입시험 후의 시편을 채취하여 비압밀비배수삼축시험을 수행하여 비배수전단강도로 결정하였다. 최종적으로 비배수전단강도와 관입시 선단저항력의 상관관계를 통해 경험상관계수를 산정하였다.

Keywords

References

  1. Aas, G., Lacasse, S., Lunne, T. and Hoeg, K. (1986). "Use of in situ tests for foundation design on clay." Proceedings of In situ '86, Use of In Situ Tests in Geotechnical Engineering, ASCE GSP 6, Blacksburg, Virginia, pp. 1-30.
  2. Ajmera, B., Tiwari, B. and Shrestha, D. (2012). "Effect of mineral composition and shearing rates on the undrained shear strength of expansive clays." GeoCongress 2012, ASCE.
  3. Amar, S., Baguelin, F., Jezequel, J. F. and Le Mehaute, A. (1975). "In situ shear resistance of clays." Proc. ASCE Spec. Conf. In Situ Measurement of Soil Properties, Raleigh, Vol. 1, pp. 22-45.
  4. Baligh, M. M., Vivatrat, V. and Ladd, C. C. (1980). "Cone penetration in soil profiling." Journal of the Geotechnical Engineering Division, Vol. 106, No. 4, pp. 447-461.
  5. Bolton, M. D., Gui, M. W., Garnier, J., Corte, J. F., Bagge, G., Laue, J. and Renzi, R. (1999). "Centrifuge cone penetration tests in sand." Geotechnique, Vol. 49, No. 4, pp. 543-552. https://doi.org/10.1680/geot.1999.49.4.543
  6. Chung, S. F., Randolph, M. and Schneider, J. (2006). "Effect of penetration rate on penetrometer resistance in clay." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, Vol. 132, No. 9, pp. 1188-1196. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1188)
  7. de Lima, D. C. and Tumay, M. T. (1991). "Scale effects in cone penetration tests." Geotechnical Engineering Congress, ASCE, GSP2 (7) Boulder, CO, pp. 38-51.
  8. DeJong, J., Yafrate, N. and DeGroot, D. (2011). "Evaluation of undrained shear strength using full-flow penetrometers." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, Vol. 137, No. 1, pp. 14-26. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000393
  9. Gui, M. W. (1998). "Guidelines for cone penetration tests in sand." Proc. Int. Conf. on Centrifuge Modelling (Centrifuge '98), A.A. Balkema, Rotterdam, Netherlands, Vol. 1, pp. 155-160.
  10. Jamiolkowski, M., Lancellotta, R., Tordella, L. and Battaglio, M. (1982). "Undrained Strength from CPT." Proc. of 2nd European Symposium on Penetration Testing, Amsterdam, pp. 599-606.
  11. Kim, J. H., Choo, Y. W., Kim, D. J. and Kim, D. S. (2015). "Miniature cone tip resistance on sand in a centrifuge." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 3, pp. 1-14.
  12. Kim, K. K., Prezzi, M., Salgado, R. and Lee, W. J. (2008). "Effect of penetration rate on cone penetration resistance in saturated clayey soils." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, Vol. 134, No. 8, pp. 1142-1153. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1142)
  13. Kjekstad, O., Lunne, T. and Clausen, C. J. F. (1978). "Comparison between insitu cone resistance and laboratory strength for overconsolidated north sea clays." Marine Geotechnology, Vol. 3, No. 1, pp. 23-36. https://doi.org/10.1080/10641197809379792
  14. Lunne, T. and Kleven, A. (1981). "Role of CPT in north sea foundation engineering." Symposium on Cone Penetration Testing and Experience, Geotechnical Division, ASCE, October, pp. 49-75.
  15. Lunne, T., Andersen, K. H., Low, H. E., Randolph, M. F. and Sjursen, M. (2011). "Guidelines for offshore in situ testing and interpretation in deepwater soft clays." Canadian Geotechnical Journal, Vol. 48, No. 4, pp. 543-556. https://doi.org/10.1139/t10-088
  16. Lunne, T., Eidsmoen, T., Gillespie, D. and Howland, J. D. (1986). "Laboratory and field evaluation of cone penetrometer." Proceedings of In situ '86, Use of In Situ Tests in Geotechnical Engineering, ASCE GSP 6, Blacksburg, Virginia, pp. 714-729.
  17. Lunne, T., Randolph, M. F., Chung, S. F., Andersen, K. H. and Sjursen, M. (2005). "Comparison of cone and T-bar factors in two onshore and one offshore clay sediments." Proc., Int. Symp. on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, in press.
  18. Nanda, S., Sivakumar, V., Hoyer, P., Bradshaw, A., Gavin, K. G., Gerkus, H., Jalivand, S., Gilbert, R. B., Doherty, P. and Fanning, J. (2017). "Effects of strain rates on the undrained shear strength of kaolin." Geotechnical Testing Journal, Vol. 40, No. 6, pp. 951-962.
  19. Randolph, M. F. and Andersen, K. H. (2006). "Numerical analysis of T-bar penetration in soft clay." International Journal of Geomechanics, Vol. 6, No. 6, pp. 411-420. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(411)
  20. Remai, Z. (2013). "Correlation of undrained shear strength and CPT resistance." Periodica Polytechnica, Civil Engineering, Vol. 57, No. 1, pp. 39-44. https://doi.org/10.3311/PPci.2140
  21. Robertson, P. K. (1989). "Soil classification using the cone penetration test" Canadian Geotechnical Journal, Vol. 27, pp. 151-158.
  22. Sheng, D., Cui, L. and Ansari, Y. (2012). "Interpretation of cone factor in undrained soils via full-penetration finite-element analysis." International Journal of Geomechanics, Vol. 13, No. 6, pp. 745-753.
  23. Stark, T. D. and Juhrend, J. E. (1989). "Undrained shear strength from cone penetration tests." Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol. 1, pp. 327-330.
  24. Stewart, D. A. and Randolph, M. F. (1994). "T-bar penetration testing in soft clay." Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2230-2235. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2230)
  25. Sweeney, B. (1987). Liquefaction evaluation using a miniature cone penetrometer and a large-scale calibration chamber, Ph.D. dissertation, Stanford University, CA.
  26. Titi, H., Mohammad, L. and Tumay, M. (2000). "Miniature cone penetration tests in soft and stiff clays." Geotechnical Testing Journal, Vol. 23, No. 4, pp. 432-334. https://doi.org/10.1520/GTJ11064J
  27. Tumay, M. T., Kurup, P. U. and Boggess, R. L. (1998). "A continuous intrusion electronic miniature cone penetration test system for site characterization." Proceedings of the First International Conference on Site Characterization-ISC'98, Atlanta, Robertson & Mayne, Eds., Balkema, No. 2, pp. 1183-1188.
  28. Wei, L., Pant, R. and Tumay, M. (2010). "A case study of undrained shear strength evaluation from in-situ tests in soft Louisiana soils." GeoShanghai International Conference, Geotechnical Special Publication, 200, Soil Behavior and Geo-Micromechanics.