• 제목/요약/키워드: peak ground velocity

검색결과 147건 처리시간 0.028초

바이브로 해머 및 RCD 공법 적용시 기존터널에 미치는 진동영향해석 (A study on the effect of ground vibration induced by vibrohammer and RCD on adjacent subway tunnel)

  • 허영;남기천;김태형;방진호;곽창원
    • 한국터널지하공간학회 논문집
    • /
    • 제5권2호
    • /
    • pp.135-146
    • /
    • 2003
  • 본 논문에서는 교량 기초를 위한 널말뚝 압입과 RCD 말뚝 시공시에 발생하는 진동에 대한 기존 지하철 구조물의 안정성을 유한차분법에 의한 동적수치해석을 이용하여 고찰하였다. 먼저 진동에 의한 구조물의 안정성 평가 기준을 국내외 사례를 토대로 제안하고 바이브로 해머의 제원과 하중제안식을 바탕으로 수치해석을 수행하여 널말뚝 압입시 발생하는 최대입자속도를 산정하였다. 아울러 RCD 말뚝 시공시 비트진동에 의한 토체의 진동속도를 실측치와 경험식을 이용하여 산정하고 그 결과를 허용진동기준과 비교하였다. 진동하중 하에서 시간에 따라 터널 천단, 어깨부 및 측벽부에서의 응답과 구조물 부재의 축응력, 전단응력 및 최대 휨압축응력이력을 제안된 기준과 비교하여 터널의 안정성을 검토하였다.

  • PDF

GIS Kriging을 이용하여 공간적으로 분포하는 지진매개변수의 분석과 손상 평가 (Damage Estimation Based on Spatial Variability of Seismic Parameters Using GIS Kriging)

  • 전상수
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.33-44
    • /
    • 2004
  • 지진시 측정되는 strong motion 데이터와 시설물의 손상의 상관관계를 구하기 위하여 본 연구를 수행하였다. 지진시 측정된 시간 - 지진강도 관계와 측정위치들이 포함된 대규모 지형정보시스템(GIS) 데이터에 대한 분석에 Kriging 공간 통계분석법을 사용함으로써 첨두지반속도(PGV)와 파이프라인 및 건물의 손상정도의 관계를 구할 수 있었으며, 특히, Kriging법은 측정치에 포함된 오차 등 불확실한 요소들을 고려한 $90\%$의 신뢰도에 해당하는 지진강도-손상 관계를 구할 수 있어서 역거리 제곱법 등 다른 공간데이터 분석법에 비하여 우수한 방법이었다.

허용진동속도를 만족하는 발파이격거리 산정 - 이론식 & 수치 해석적 접근 (Estimation of the Blasting Distance Satisfying Allowable Peak Particle Velocity - Analytical & Numerical Analysis Approach)

  • 전상수;장양원;정두회
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.39-46
    • /
    • 2007
  • 발파를 통한 지반굴착 시 화약의 폭발로 인해 발생되는 지반의 진동은 인근 지상구조물과 지하매설물에 영향을 미치게 된다. 이러한 영향은 구조물에 피해를 발생시킬 뿐만 아니라 도심지 공사의 경우 민원에 의한 문제로 많은 경제적, 시간적 피해를 야기하므로 이에 대한 사전 영향성 평가가 필요하다. 본 연구에서는 터 널상부에 재개발을 통한 주거시설 건립을 위해 부지조성을 목적으로 한 발파작업 시 터널의 안정성을 이론식과 유한차분해석 프로그램인 $FLAC^{2D}$를 이용하여 검토하였다.

보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석 (Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe)

  • 최규정;권희자
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period

  • Yaghmaei-Sabegh, Saman
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.457-471
    • /
    • 2021
  • This study aims at providing a simple and effective methodology to define a meaningful characteristic period for special class of earthquake records named "pulse-like ground motions". In the proposed method, continuous wavelet transform is employed to extract the large pulse of ground motions. Then, Fourier amplitude spectra obtained from the original ground motion and the residual motion is simply compared. This comparison permits to define a threshold pulse-period (Tp∗) as the threshold period above which the pulse component has negligible contributions to the Fourier amplitude spectrum. The effect of pulse on frequency content of motions was discussed on the light of this definition. The advantage and superior features of the new definition were related to the inelastic displacement ratio (IDR) for single-degree-of-freedom systems with period equal to one half of the threshold period. Analyses performed for the proposed period at three ductility levels u=2,4,6 were compared with the results obtained at half of pulse period derived from wavelet analysis, peak-point method and the peak of product of the velocity and the displacement response spectra (Sv x Sd). According to the results, pulse effects on inelastic displacement ratio seem to be more important when $\frac{T_p^*}{T}=2$ (T is the fundamental vibration period of system). The results showed that utilizing of the proposed definition could facilitate an enhanced understanding of pulse-like records features.

원자력발전소의 단순화 된 실증적 지진감쇄 관계 (Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites)

  • Tanwa, Kankang;Eric, Yee
    • 한국지반공학회논문집
    • /
    • 제34권9호
    • /
    • pp.43-49
    • /
    • 2018
  • 감쇠식을 이용한 지진재해평가는 다양한 사회기반시설을 대상으로 한 프로젝트에 널리 수행된다. 이에 따라, 다양한 지반 조건에서의 최대지반가속도 예측을 위한 수많은 감쇠식과 관련 연구들이 수십 년에 걸쳐 이루어졌다. 하지만 기존에 제시된 대부분의 감쇠식들은 일반적으로 토층 상부 30m에 대한 평균 전단파 속도를 지반 분류의 기준으로 적용하여 다양한 지반 조건에서의 지진 규모나 최대지반가속도를 예측할 수 있도록 제시되어 터널이나 원자력 발전소와 같이 기반암을 기초로 하여 건설되는 특수한 유형의 사회기반시설물에 적용하기에는 불확실성을 지니고 있었다. 본 연구에서는 일본에서 측정된 데이터를 기반으로 암반 조건에서의 최대지반가속도 예측이 가능한 개선된 상관관계를 제시하였으며, 산출된 결과를 기존에 제시된 감쇠식을 통해 계산된 결과와 비교하였다. 분석결과, 기존에 제시된 감쇠식들을 통해 최대지반가속도를 예측할 경우, 200km 미만의 거리 내에 위치한 암반지역에서의 최대지반가속도를 상대적으로 과소 예측 하는 것으로 나타났다.

Overturning of rocking rigid bodies under transient ground motions

  • Sorrentino, Luigi;Masiani, Renato;Decanini, Luis D.
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.293-310
    • /
    • 2006
  • In seismic prone areas it is possible to meet very different objects (equipment components, on shelf artefacts, simple architectural elements) that can be modelled as a rigid body rocking on a rigid foundation. The interest in their behaviour can have different reasons: seismological, in order to estimate the ground motion intensity, or more strictly mechanical, in order to limit the response severity and to avoid overturning. The behaviour of many rigid bodies subjected to twenty wide ranging acceleration recordings is studied here. The response of the blocks is described using kinematic and energy parameters. A condition under which a so called scale effect is tangible is highlighted. The capacity of the signals to produce overturning is compared to different ground motion parameters, and a good correlation with the Peak Ground Velocity is unveiled.

지면효과를 받는 NACA0012 익형주위 유동장의 실험적 연구 (Experimental Study of Flowfields Over a NACA0012 Airfoil with Ground Effects)

  • 조정현;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제4권2호
    • /
    • pp.29-34
    • /
    • 2001
  • Experimental and numerical studies are conducted to investigate the flow field over a NACA0012 airfoil with ground effects. In experiment, the ground is simulated by a moving belt system. From the comparison between the experimental and numerical results, it is concluded that the velocity gradient over the ground plane causes the increments in pressure coefficient on lower surface of the airfoil and reduces the suction peak at the leading edge.

  • PDF

Seismic response of nonstructural components considering the near-fault pulse-like ground motions

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan;Xie, Li-Li
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1213-1232
    • /
    • 2016
  • This paper investigates the response of nonstructural components in the presence of nonlinear behavior of the primary structure considering the near-fault pulse-like ground motions. A database of 81 near-fault pulse-like ground motions is used to examine the effect of these ground motions on the response of nonstructural components. For comparison, a database of 573 non-pulse-like ground motions selected from the PEER database is also employed. The effects of peak ground velocity (PGV), maximum incremental velocity (MIV), primary structural degrading behavior and damping of nonstructural components are evaluated and discussed statistically. Results are presented in terms of amplification factor which quantifies the effect of inelastic deformations of the primary structure on subsystem responses. The results indicate that the near-fault pulse-like ground motions can significantly increase the amplification factors of nonstructural components with primary structural period and the magnitude of increase can reach 17%. The effect of PGV and MIV on amplification factors tends to increase with the increase of primary structural ductility. The near-fault pulse-like ground motions are more dangerous to components supported by structures with strength and stiffness degrading behavior than ordinary ground motions. A new simplified formulation is proposed for the application of amplification factors for design of nonstructural components for near-fault pulse-like ground motions.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.