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Damage Estimation Based on Spatial Variability of Seismic
Parameters Using GIS Kriging
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Abstract

This paper is focused on the spatial variability of measured strong motion data during earthquake and its relationship
with the performance of water distribution pipelines and residential buildings. Analyses of strong motion and the
correlations of peak ground velocity (PGV) and pipeline and building damage were conducted with a very large
geographical information system (GIS) database including the relationship of time and earthquake intensity and the
measured location, and Kriging spatial statistics. Kriging was used to develop regressions of pipeline repair rate (RR)
and residential building damage ratio (DR) associated with 90% confidence peak ground velocity (PGV). Such regressions
using Kriging provide an explicit means of characterizing the uncertainty embodied in the strong motion data compared

with other spacial statistics such as inverse distance method.
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1. Introduction ArcInfo TIN model uses an exiting database including

point, line, and polygon coverages and creates a tin data

This paper provides an evaluation of the spatial structure that consists of nodes and a series of edges

variability of peak ground velocity (PGV) to quantify
the spatial uncertainties of seismic and site conditions.
It presents explanations for interpolation algorithms,
such as Triangular Irregular Network (TIN) [e.g. ESRI,
1994] and kriging (e.g., Ripley, 1987), which were used
to create PGV contours. ArcInfo TIN is one of the
surface models in ArcInfo software (ESRI, 1994). The

joining these. These nodes form triangles. The nodes are
the data points. The paper provides a description of
regionalized variable theory and variogram models. The
results of ordinary kriging and TIN procedures for PGV
contours are presented and discussed (Jeon, 2002).
Regression analyses are performed to develop predictive

relationships between both PGV and pipeline repair
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rates (RRs), which is pipeline repairs’km, and damage
ratios (DRs), which is DR [% of existing structures with
damage equal to or exceeding a particular damage factor,
DF (% of building replacement cost)], for residential
timber structures, respectively, for the 1994 Northridge
earthquake that was collected, digitized and organized by
researchers at Cornell.

Ordinary kriging is also adapted to delineate 90%
confidence limits for PGV in two-dimensional space.
Regressions of PGV at 90% confidence with pipeline
repair rates and building damage ratios provide a means
of compensating for the spatial variability of the data and
for making predictions with higher confidence than those

estimated on the basis of mean values.

2. Geostatistical Kriging Method

Kriging is based on statistical models representing
relationships among the existing data points. Not only are
these techniques capable of predicting values at unsam-
pled locations, but they also provide a measure of the
uncertainty in these predictions from which confidence
values can be deduced.

Geostatistical methods for interpolation start with the
recognition that the spatial variation of any continuous
attribute is often too irregular to be modeled by a simple
and smooth mathematical function. The variation is
therefore described by a stochastic surface. Generation of
the stochastic surface is accomplished through regiona-
lized variable theory.

Burrough and McDonnell (1998) provide an explan-
ation of regionalized variable theory. The theory starts
with the assumption that the spatial variation of any
variable is expressed as the sum of three major
components as shown in Fig. 1. They are a structural
component, which accounts for the trend of the data, a
random but spatially correlated component, known as the
variation of the regionalized variable, and a spatially
uncorrelated random noise or residual error term, a
position in one, two, or three dimensions. The value of
a random variable Z at s is given in which m(s) is a

deterministic function describing the structural
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component of Z at s, €'(s) is the term denoting the
stochastic, locally varying but spatially dependent
residuals from m(s) - the regionalized variables -, and €"
(s) is a residual, spatially independent noise term.
Burrough and McDonnell (1998) indicate that the
simplest case occurs when no trend or drift is either
present or deduced from the data. For this condition, m(s)
equals the mean value, 11, in the sampling area. The
average or expected difference between Z(s) and Z(s+h)
at any two points s and st+h, respectively, separated by

a distance vector h, is zero:
EZ(s)— Z(s+ m]=0 (D

Furthermore, it is assumed that the variance of
differences depends only on the distance between sites,

h, so that

E Z(5)— Z(s+ W] =E[ €(s)— € (s+ *1=2AR) (2)

where ¢(h) is known as the semivariance. The two
conditions, the second-order stationarity for covariance
and the intrinsic stationarity for variograms, establish the
requirements for regionalized variable theory. The
second-order stationarity for covariance and intrinsic
stationarity for variograms assume that the covariance
and the variance of the difference are the same between
any two points at the same separating distance no matter
which two points are chosen.

If the conditions specified by the above assumptions

are fulfilled, the semivariance, (%), is estimated from

Average Behavior
N o7 ~ Spatially Correlated, but Random variation
~“MW Random, uncomrelated local variation

S

Fig. 1. Spatial variations of regionalized variable theory (after
Burrough and McDonnell, 1998)



sample data as follows

W) =y BAA)— 2+ Q)
where n is the number of pairs of sample points of
observations of the values of attribute Z separated by
distance h. A plot of A %) against h is known as the
experimental variogram. The experimental variogram
helps to provide a quantitative description of regionalized
variation. Before functions, such as interpolation and
characterization of spatial patterns, can be performed a
theoretical model needs to be fitted to the experimental

variogram.
3. Ordinary Kriging

Ordinary kriging for PGV was performed, and the
resulting PGV values were correlated with damage to
cast iron pipelines, expressed as RR (repair rate), and
damage to residential timber structures, expressed as DR
(damage ratio). To utilize ordinary kriging it is necessary
to 1) evaluate the type of distribution that best represents
the seismic parameter, 2) justify the expression for the
random variable that is assumed in the kriging appli-
cation, and 3) select the most appropriate variogram

model.

3.1 Distribution Modei

It is frequently assumed that seismic parameters are
natural log (In) normally distributed. For example, Boore,
et al. (1993) use the geometric mean to estimate
randomly oriented components of horizontal ground
motion. To determine the appropriate model for the
distribution of PGV, values from 164 records of
Northridge earthquake strong motion were used to
develop a cumulative frequency distribution for goodness-
of-fit testing using the Kolmorgorov-Smirnov (K-S) test.
Cumulative frequency distributions were developed for
both the arithmetic and In values of PGV.

Figs. 2 and 3 show plots of the cumulative frequency
and theoretical distribution functions in which the

maximum differences, Du..., between the observed data
and K-S theoretical model are indicated. There is a
significantly better agreement between the theoretical
distribution [F(x)] and observed cumulative frequency
[Fa(x)] plot for In (PGV). Comparison of Ds... with K-S
values at various significance levels, Dy’, (where a =
significance level and n = 164 for PGV) shows that a
normal distribution of arithmetic PGV is not significant
at even the 1% level. In contrast, the normal distribution
of In (PGV) is significant to approximately the 4% level.

Similar goodness-of-fit tests were performed with
thechi-square test. This type of testing shows that a
normal distribution of arithmetic values fail to pass at a
1% significance, whereas a In (PGV) distribution is
significant to approximately 2.5%.

The K-S plots in Figs. 2 and 3 and the substantially
higher significance levels for In (PGV) indicate that a
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Fig. 2. Cumulative distribution of PGV
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log-normal model for PGV is better than an arithmetic
one. Accordingly, kriging analyses were performed for In
(PGV).

3.2 Characteristics of the Random Variables

It is assumed that the distribution of strong ground
motion is a stochastic surface, governed entirely by a
random process. This neglects any deterministic trend in
the distribution. If an actual trend exists, such an
assumption will result in a higher estimate of uncertainty
relative to the case for a specified trend. Hence, the
application of ordinary kriging in this instance will be
biased towards a conservative assessment of uncertainty.

The variance of the spatially dependent residuals, s g

may be expressed as

s i = _rll lZI{Z(S ) —Z(si+h) — pam’ “)
in which Ugir = population average difference between

any two locations. The semivariance is likewise given as

]=1{Z(S D —Z(s;+h) — g g} ®

“Ah) =

1
2n
DNV CREF/CIEE N EE MO

Earthquake strong motions tend to be radially distri-
buted around the seismic source. It can be shown that
a radially symmetrical distribution of seismic parameters
will result in pgr = 0. Eq. 5 reduces to the general
expression for semivariance in ordinary kriging when Waier
= (. This results in a well-defined sill region of the
variogram. In contrast, (%) tends to increase para-
bolically beyond the range when pdiff = 0.

As will be shown in the next section, there is a
well-defined sill region for the variogram developed for
PGV with ordinary kriging and no evidence for increasing
"W k) beyond the range. Using the 164 measurements of
PGV, the mean difference in measurements, d g, was
calculated as 1.86 cm/sec. This is a very low value that
does not suggest an appreciable Pas. The characteristics

of the data, therefore, support the development of a
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well-defined variogram.

3.3 Cressie Goodness—of-Fit Statistic of
Variogram Model

The Cressie goodness of fit statistic, C (Cressie, 1993),

is calculated for variogram models as follows

C=n [HBLAR) 2 ©)
where n is the number of pairs of PGV, 1 %) is the
empirical semivariance, and (%) is the theoretical
semivariance. The magnitude of Cressie statistic depends
on the total number of pairs of samples. Because not all
samples are necessarily paired the same number of times
in different directions, Clark and Harper (2000) propose
a modification to remove the scaling by total number of
pairs as follows

c T [0

Table 1 shows the Cressie goodness-of-fit statistics, as
modified by Clark and Harper (2000), of the four
different variogram models. As shown by the table, there
is little difference in the Cressie statistic for the different
models, and very little difference between the statistic for
the spherical and Gaussian models. To achieve a
consistent approach to ordinary kriging, the .spherica]
model was likewise adopted for PGV. As will be
explained in a forthcoming section, contours of PGV
developed by ordinary kriging with the spherical model
compare very favorably with similar contours developed
from the same data with TIN. This favorable comparison
lends additional weight to the selection of the spherical

model.

Table 1. Cressie goodness—of-fit statistic of variogrom model for
PGV {(cm/sec)

Variogram Model Cressie Statistic
Gaussian 1.93
Spherical 2.18

Linear 2.55
Exponential 2.49




4. Results of Kriging
4.1 Variogram for Ln (PGV)

Fig. 4 shows the variogram for the In (PGV) data set.
The plotted line presents the actual variance. It can be

seen that ¢, reaches a plateau, or sill, at a distance

of approximately 237,000 ft (72 km) and remains
relatively constant to about 300,000 ft (91 km), after
which if decreases in an erratic fashion.

Fig. 5 shows the predicted variance using a spherical
model with a range of 237,000 ft (72 km). The spherical
model follows the trend of the actual variogram. The sill
value is about 0.88 (cm/sec)’, with a nugget of

approximately zero.

4.2 Location of PGV Records

Fig. 6 shows the locations of the 164 strong motion
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Fig. 5. Spherical variogram mode! of In(PGV) data with a range
= 237,000 ft (72 km)
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records used in this paper and for developing PGV
contours with TIN in paper. Fig. 7 shows the PGV
contours developed with TIN. Superimposed on both
figures is a circle with radius equal to a range of 237,000
ft (72 km) determined from the variogram. The circle is
centered on the zone of highest PGV. The range helps
to define a radius of influence, within which PGV values
are spatially correlated. After the range, the semivariance
has no variance. It means that the data points out of range
do not influence on semivariance. Therefore, the data
points outside of the range were not necessary to be used

for the analysis.

4.3 PGV Contours

Fig. 8 shows the PGV contours generated by kriging
superimposed on the PGV contours generated by TIN.
Contours were developed by superimposing a grid of 300
X300 cells on the area in Fig. 6. Values of In (PGV)
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.

Fig. 6. Spatially distributed PGV records from 164 Strong
motion stations

Fig. 7. PGV contours with respect to 164 strong motion stations
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were estimated by ordinary kriging at nodal points
centered in each cell. The In (PGV) values were
converted to PGV from which the contour lines for
ordinary kriging are plotted. As shown in Fig. 3, the
PGV contours developed by kriging are similar to those
developed by TIN, especially for the contour lines with
low PGV values.

Fig. 9 shows the In (PGV) variance contours obtained
from ordinary kriging superimposed on the locations of
strong motion stations. The stations located in Los
Angeles Basin and central part of San Fernando Valley
areas are separated by the distance of 0.7 to 2.3 km.
Because the stations are closely located each other, the
variance is relatively small. In contrast, the stations
located in western part of San Fernando Valley and Santa
Monica Bay areas are separated by the distance of 6.7
to 8.8 km. The greater amount of variance is asscciated

with fewer stations separated by greater distances.

Fig. 8. PGV contours from kriging superimposed on PGV
contours from TIN

0 riomerars 7

Fig. 9. Ln (PGV) variance contours superimposed on strong
motion station
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4.4 Correlation of Cast Iron Pipeline Damage
with PGV

Fig. 10 shows that cast iron (CI) pipeline repair rate
(RR) contours superimposed on PGV zones were
developed by ordinary kriging. Using the GIS database,
a pipeline repair rate was calculated for each PGV zone,
and correlations were made between the repair rate and
average PGV for each zone.

Fig. 11 shows the linear regression lines for CI RR
associated with PGV obtained from kriging and TIN.
There is no significant difference between the regression

lines.

4.5 Correlation of Residential Building Damage
with PGV

Table 2 lists total number of existing buildings that

Fig. 10. Cl pipeline repair rate plotted relative to PGV from

kriging
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Fig. 11. Cl pipeline repair rate correlation with PGV from TIN
and Kriging



Table 2. Total number of existing buildings associated with PGV
(cm/sec) for tax assessor grid data

PGA Number of Existing | Percentage of Existing
(cm/sec) Buildings Buildings (%)

5

15 36952 13.3

25 34804 12.5

35 34862 12.5

45 45038 16.2

55 41041 14.7

65 23158 8.3

75 12372 4.4

85 12629 4.5

95 7966 2.9

105 8356 3.0

115 7547 2.7

125 7939 2.8

135 3457 1.2

145 1415 0.5

155 1126 0.4

165 0 0.0
Total 278662 100.0

were affected by various PGVs for tax assessor grid data.
The data were assembled from the GIS by summing all
damaged buildings inside each PGV zone. The PGV

assigned to each zone is the mid-range value.

Tables 3 and 4 summarize data associated with
residential timber frame buildings in a matrix format for
tax assessor grid data. Table 3 lists the number of
buildings that were affected by various PGV according
to damage factor (DF) expressed as a percentage. The
data were assembled from the GIS by summing all
damaged buildings of a given DF inside each PGV zone.
Table 4 lists the DRs that were computed for various
combinations of DF and PGV. Damaged buildings were
not observed in areas with PGV < 10 cm/sec. The
weighted average damage ratios, calculated by summing
all damaged buildings for a given PGV, are shown in the
bottom row.

To establish a procedure that minimizes local biases
and at the same time utilizes a sample size small enough
to evaluate data trends over a meaningful range of
variables, a minimum sample size of approximately
2.0 - 2.5% of the population as described in Appendix
A was adopted when developing regressions among
damage ratio, PGV, and DF.

Fig. 12 shows the linear regression of damage ratio

(DR) vs. peak ground velocity (PGV) for various damage

Table 3. Number of residential timber—frame buildings according to PGV (cm/sec) and DF (%) for tax assessor grid data

PGV\DF = 5% > 10% > 20% = 30% > 40% > 50% > 60% > 70% > 80% > 90%
5
15 111 54 19 14 1 8 4 4 3 2
25 814 344 114 70 56 48 35 29 21 13
35 1226 593 242 118 86 62 4 33 25 19
45 1923 894 303 180 135 402 76 71 56 43
55 2619 1174 402 231 151 446 79 65 53 38
65 1351 627 202 96 62 49 31 22 21 17
75 1022 430 168 93 76 56 36 34 25 19
85 1248 614 221 104 67 44 23 19 9 6
95 852 411 161 76 58 43 21 15 10 9
105 822 M 175 74 44 33 15 14 10 9
115 656 292 122 70 59 42 23 20 17 7
125 637 333 140 79 59 48 40 28 22 15
135 295 157 67 3 22 17 13 1" 8 5
145 140 65 30 20 11 7 3 1 1
155 64 32 17 1 8 7 6 5 5
165
Total 13780 6431 2383 1267 905 682 446 3n 286 203
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factors (DFs). Most regressions for PGV are quite
consistent with the data trend as indicated by relatively
high r*. The r* values are slightly less than those resulting
from TIN. Fig. 12 (b) compares the DR regressions
resulting from kriging with those resulting from TIN. As
shown in the figure, linear regressions of DRs from
kriging and TIN are very similar. The predicted values
of DRs from TIN are slightly higher than those from

kriging.

The data in Fig. 12 are replotted in Fig, 13 as a linear
regression that accounts for the relationship among DR,
DF, and PGV. As evinced by high 1* and generally good
characteristics with respect to residuals, the regression in
Fig. 13 provides a good fit to the data.

Fig. 14 shows standardized residuals (Draper and Smith,
1981) plotted with respect to scaled PGV for tax assessor

Table 4. Damage ratio (%) of residential timber—frame buildings according to PGV (cm/sec) for DF(%) for tax assessor grid data

PGV\DF > 5% > 10% > 20% > 30% > 40% > 50% > 60% > 70% | = 80% > 90%
5
15 0.30 0.15 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01
25 2.34 0.99 0.33 0.20 0.16 0.14 0.10 0.08 0.06 0.04
35 3.52 1.70 0.69 0.34 0.25 0.18 0.12 0.09 0.07 0.05
45 4.27 1.98 0.67 0.40 0.30 0.23 0.17 0.16 0.12 0.10
55 6.38 2.86 0.98 0.56 0.37 0.28 0.19 0.16 0.13 0.09
65 5.83 2.7 0.87 0.41 0.27 0.21 0.13 0.09 0.09 0.07
75 8.26 3.48 1.36 0.75 0.61 0.45 0.29 0.27 0.20 0.15
85 9.88 4.86 1.75 0.82 0.53 0.35 0.18 0.15 0.07 0.05
95 10.70 5.16 2.02 0.95 0.73 0.54 0.26 0.19 0.13 0.1
105 9.84 4.92 2.09 0.89 0.53 0.39 0.18 017 0.12 0.1
115 8.69 3.87 1.62 0.93 0.78 056 0.30 0.27 0.23 0.09
125 8.02 419 1.76 1.00 0.74 0.60 0.50 0.35 0.28 0.19
135 8.53 4.54 1.94 0.90 0.64 0.49 0.38 0.32 0.23 0.14
145 9.89 4.59 2.12 1.41 0.78 0.49 0.21 0.07 0.07 0.07
155 5.68 2.84 1.51 0.98 0.7 0.62 0.53 0.44 0.44
165
W.Aver. 4.95 2.31 0.86 0.45 0.32 0.24 0.16 0.13 0.10 0.07
10.00 10.00
& 100 5 1.00
2 ] 3
4 ) ]
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Fig. 12. Damage ratio regression for PGV
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Fig. 13. Damage ratio regression for scaled PGV

grid data. The data are distributed in a reasonably
uniform fashion about the population regression. There
appears to be some bias towards larger variation at lower
values of scaled PGV.

5. Confidence Level of PGV

One of the strengths of using a statistical approach is
that it is possible to calculate a statistical measure of
uncertainty for the prediction of PGV. In this case, the
PGV at unsampled locations can be estimated. Kriging
provides the estimated value at each location and its
variance. If we assume that these values represent the
population mean and variance, we can determine the
PGV that corresponds to a 90% exceedance value. In
other words, we can estimate a level of PGV at each
location that has a 90% chance of being exceeded. This
leaves only a 10% chance that a lower value may have
occurred. This adjustment allows us to compensate for
the spatial variability of the data and make predictions
with higher confidence than those predicted on the basis
of the mean value.

Let #(s) be the distribution function of the standard
normal variate, s. The probability of a seismic parameter,
SP, being less than a certain value [In(SP)]o.i0 at the 10%

level is:

5 | T T T LI l‘ T T T LRI fll T
4 |- =
I+ -
©
= -
2
4 .
x q.
© o ..‘. (]
3 3%
T ® W
© ®
2 [}
5 _
»
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_5 I 1 1 ] L1 il || 1 1 L 111 ||| 1
0.1 1.0 100

PGV (cmisec)DF(%)!11
Fig. 14. Standardized residual vs. scaled PGV

¢[ {In(SP);nln—ﬂ ]:0.10 (8)
where ¢ is the standard deviation or square root of the
variance.

Eq. 8 reduces to

_{_IMS_PE(}FJM =¢(0.100 = —¢ 7'(0.90) = —1.28
(€)

which means
[IH(SP)] 0.10 — — 1.28 (10)

In this case, p and 0 are the mean and standard
deviation of either the In (PGV), both of which are
obtained directly from ordinary kriging. It is recognized
that [In(SP)]o.10 refers to a probability P = 10% that a
lower value exists. Correspondingly, {In(SP)]o.10 refers to
a probability 1 - P = 90% that a larger value exists. Thus,
we can develop regressions using such values with 90%
confidence that they will not represent overestimated
parameters.

It should be noted that the statistics associated with
characterizing the spatial variability of PGV are not
based on random sampling. The purpose of the statistical
interpretation is to predict seismic parameters at un-
sampled locations for a specific earthquake and not to
predict seismic parameters during future earthquakes. The

confidence reflects a stochastic process that governs the
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Fig. 15. 90% confidence level of PGV contours superimposed on
mean PGV contours

distribution of strong motion. Relationships are deduced
from the regression analyses of the Northridge data.
Assuming similarity is preserved in future earthquake
events for the characteristics of strong motion, pipelines,
and residential buildings, the relationships obtained in
this study can be applied for earthquake loss estimation,
irrespective of the time and location of future seismic
activity.

Fig. 15 shows the 90% confidence level of PGV
contours superimposed on the mean PGV contours,
which are shown in Fig. 10, generated by ordinary
kriging. Ln (PGV) values at the locations of strong
motion instruments were used to predict In (PGV) values
in a grid of 300X 300 cells using the spherical variogram
model with a range of 237,000 ft (72 km). The 90%
confidence level of In (PGV) in each cell was calculated
by Eq. 10. Ln (PGV) values were converted to arithmetic
PGV values and then PGV contours were generated
using TIN. As shown in the figure, the 90% confidence
level of PGV contours is very similar to the mean PGV
contours and the PGV zones of 90% confidence level are

positioned at relatively higher PGV zones of mean.

5.1 Correlation of Cast Iron Pipeline Damage
with PGV

Fig. 16 shows cast iron (CI) pipeline repair rate
contours superimposed on 90%-confidence-level PGV
zones. The 90% confidence level PGV zones were

developed by Eq. 10 with the PGV records obtained from

42 Jour. of the KGS, Vol. 20, No. 7, September 2004

Fig. 16. Cl pipeline repair rate plotted to 90% confidence level
of PGV contours

Kriging - 90% Confidence

3 Fit Equation:

log(Y) = 0.94 * log(X) - 5.54
R-squared = 0.75

Repair Rate (Number of Repairs)

0.01 T T T T T T T 1 I

10 100
PGV (cm/sec)

Fig. 17. Cl pipeline repair rate correlation with 90% confidence
values of PGV

164 strong motion instruments. Using the GIS database,
a pipeline repair rate was calculated for each PGV zone,
and correlations were made between the repair rate and
average PGV for each zone.

Fig. 17 shows the linear regression of RR versus 90%
confidence values of PGV. There is a close statistical fit
of the regression line to the data, indicating a good
correlation of repair rate with PGV. Fig. 18 shows CI
repair rates obtained from the regression line corres-
ponding to 90% confidence values as well as the mean
PGVs determined by ordinary kriging. As expected,
the regression for the 90% confidence values plots above

the mean PGV regression.



90% Confidence
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Fig. 18. Cl pipeline repair rate correlation with 80% confidence
values of PGV and mean PGV

6. Conclusions

To investigate the spatial variability of peak ground
velocity (PGV), ordinary kriging was performed.
Ordinary kriging is a geostatistical process for making
unbiased estimates at unsampled locations with the
smallest estimation variance (e.g., Burrough and
McDonnell, 1998; Clark and Harper, 2000). It does so
by quantifying the spatially correlated variance of the
differences in seismic parameters at all sampled locations
in the form of a variogram. The variogram is then used
to make weighted average estimates at unsampled
locations from neighboring recorded values.

Kriging is an interpolation procedure, like inverse
squared distance or Triangulated Irregular Network (TIN)
techniques, by which strong motion parameters are
projected from geocoded measurements to locations
where no measurement is available. One of the great
strengths of ordinary kriging is that it provides a
statistical measure of uncertainty for estimates of seismic
parameters.

In contrast, interpolation procedures, such as TIN,
provide no statistical measure of uncertainty. Regression
analyses for predicting pipeline and residential building
damage without statistical procedures are based on the

assumption that seismic parameters are known without

error and that any statistical measure of uncertainty will
apply only for pipeline repair rates and residential
building damage ratios.

To utilize ordinary kriging it is necessary to evaluate
the type of statistical distribution model that best
represents the seismic parameter of interest. Goodness-
of-fit assessments, based on Kolmogorov-Smirnov and
chi-square tests of the strong motion measurements show
that a log-normal model for PGV is much better than an
arithmetic one. Moreover, an evaluation of the Cressie
goodness-of-fit statistics (Clark and Harper, 2000) for
different variogram models shows that a spherical model
is best suited for the application of kriging with the
Northridge earthquake data set.

Contours of PGV developed with ordinary kriging
compare very favorably with those developed with TIN
procedures. Moreover, regressions of pipeline repair rate
(RR) and residential building damage ratio (DR) vs. PGV
developed from ordinary kriging are remarkably similar
to and consistent with those generated by TIN inter-
polations.

By assuming that kriging estimates represent the
population mean and variance, PGV values were readily
calculated for 90% exceedance values. In other words,
at each location estimates were made of PGV with 90%
chance of being exceeded. This leaves only a 10%
chance that a lower value may have occurred.

Regressions of pipeline RR and residential building
DR were made for 90% exceedance values of PGV and
compared with the mean values from kriging as well as
PGV estimates from TIN procedures. Regressions based
on 90% confidence address concerns about the uncer-
tainty of spatially variable data. They provide a means
of compensating for this uncertainty and engaging in loss
estimation with higher confidence than possible with
regressions developed on the basis of mean or apparent

average values.
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