DOI QR코드

DOI QR Code

Overturning of rocking rigid bodies under transient ground motions

  • Sorrentino, Luigi (Dipartimento di Ingegneria Strutturale e Geotecnica, Universita "La Sapienza") ;
  • Masiani, Renato (Dipartimento di Ingegneria Strutturale e Geotecnica, Universita "La Sapienza") ;
  • Decanini, Luis D. (Dipartimento di Ingegneria Strutturale e Geotecnica, Universita "La Sapienza")
  • Received : 2005.03.25
  • Accepted : 2005.11.04
  • Published : 2006.02.20

Abstract

In seismic prone areas it is possible to meet very different objects (equipment components, on shelf artefacts, simple architectural elements) that can be modelled as a rigid body rocking on a rigid foundation. The interest in their behaviour can have different reasons: seismological, in order to estimate the ground motion intensity, or more strictly mechanical, in order to limit the response severity and to avoid overturning. The behaviour of many rigid bodies subjected to twenty wide ranging acceleration recordings is studied here. The response of the blocks is described using kinematic and energy parameters. A condition under which a so called scale effect is tangible is highlighted. The capacity of the signals to produce overturning is compared to different ground motion parameters, and a good correlation with the Peak Ground Velocity is unveiled.

Keywords

References

  1. Allen, R.H. and Duan, X. (1995), 'Effects of linearizing on rocking-block toppling', J. Struct. Eng., ASCE, 121(7), 1146-1149 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1146)
  2. Allen, R.H., Oppenheim, I.J., Parker, A.R. and Bielak, J. (1986), 'On the dynamic response of rigid body assemblies', Earthq. Eng. Struct., 14(6),861-876 https://doi.org/10.1002/eqe.4290140604
  3. Anderson, J.C. and Bertero, VV (1987), 'Uncertainties in establishing design earthquakes', J. Struct. Eng., ASCE, 113(8), 1709-1724 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:8(1709)
  4. Anooshehpoor, A, Heaton, T.H., Shi, B. and Brune, J.N. (1999), 'Estimates of the ground accelerations at Point Reyes Station during the 1906 San Francisco earthquake', B. Seismol. Soc. Am., 89(4), 845-853
  5. Araya, Rand Saragoni, G.R (1984), 'Earthquake accelerogram destructiveness potential factor', Proc. ofthe 8th World Conf. on Earthquake Engineering, San Francisco, CA,USA
  6. Arias, A (1970), 'A measure of earthquake intensity', Hansen R.J (ed), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, MA,USA
  7. Aslam, M., Godden, W.G and Scalise, T. (1980), 'Earthquake rocking response of rigid bodies', J. Struct. Div., ASCE, 106(ST2), 377-392
  8. Augusti, G and Sinopoli, A. (1992), 'Modelling the dynamics of large block structures', Meccanica, 27(3), 195-211 https://doi.org/10.1007/BF00430045
  9. Casolo, S. (2001), 'Significant ground motion parameters for evaluation of the seismic performance of slender masonry towers', J. Earthq. Eng., 5(2), 187-204 https://doi.org/10.1142/S1363246901000406
  10. Chen, W.E and Scawthorn, C. (2003), Earthquake Engineering Handbook, CRC Press, Boca Raton, FL, USA
  11. de Felice, G and Giannini, R. (2001), 'Out-of-plane seismic resistance of masonry walls', J. Earthq. Eng., 5(2), 253-271 https://doi.org/10.1142/S1363246901000340
  12. Decanini, L.D. and Mollaioli, F. (1998a), 'Formulation of elastic earthquake input energy spectra', Earthq. Eng. Struct., 27(12), 1503-1522 https://doi.org/10.1002/(SICI)1096-9845(199812)27:12<1503::AID-EQE797>3.0.CO;2-A
  13. Decanini, L.D. and Mollaioli, F. (1998b), 'Parameters to be considered in the establishment of the design earthquake based on energy concepts', Structural Engineering World Wide, Elsevier, New York, NY, USA
  14. Fajfar, P., Vidic, T. and Fischinger, M. (1989), 'Seismic demand in mediurn- and long-period structures', Earthq. Eng. Struct., 18(8), 1133-1144 https://doi.org/10.1002/eqe.4290180805
  15. Gregor, N.J. and Bolt, B.A. (1997), 'Peak strong motion attenuation relations for horizontal and vertical ground displacements', J. Earthq. Eng., 1(2), 275-292 https://doi.org/10.1142/S136324699700012X
  16. Hogan, S.J. (1992a), 'The effect of damping on rigid block motion under harmonic forcing', Proc. R. Soc. Lon. Sen-A, 437(1899), 97-108
  17. Hogan, S.J. (1992b), 'Heteroclinic bifurcations in damped rigid block motion', Proc. R. Soc. Lon. Ser, 439(1905), 155-162
  18. Housner, G.W. (1963), 'The behavior of inverted pendulum structures during earthquakes', B. Seismol. Soc. Am., 53(2),403-417
  19. Housner, G.W. and Jennings, P.C. (1964), 'Generation of artificial earthquakes', J.. Eng. Mech. Div , ASCE, 90(EM1), Proceedings Paper 380
  20. Ishiyama, Y. (1982), 'Motions of rigid bodies and criteria for overturning by earthquake excitations', Earthq. Eng. Struct., 10(5),635-650 https://doi.org/10.1002/eqe.4290100502
  21. Ishiyama, Y. (1984), 'Motions of rigid bodies and criteria for overturning by earthquake excitations', Bulletin of the New Zealand National Society for Earthquake Engineering, 17(1), 24-37
  22. Iyengar, R.N. and Manohar, C.S. (1991), 'Rocking response of rectangular rigid blocks under random noise base Excitations', Int. J. Nonlinear Mech., 26(6), 885-892 https://doi.org/10.1016/0020-7462(91)90039-V
  23. Koh, A.S. and Mustafa, G (1990), 'Free rocking of cylindrical structures', J. Eng. Mech., ASCE, 116(1), 35-54 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:1(35)
  24. Liberatore, D. and Spera, G (2001a). 'Response of slender blocks subjected to seismic motion of the base: Experimental results and numerical analyses', Proc. of the 5th Int. Symposium on Computer Methods in Structural Masonry, Rome, Italy, April
  25. Liberatore, D. and Spera, G (2001b). 'Oscillazioni di blocchi snelli: valutazione sperimentale della dissipazione di energia durante gli urti', Proc. of the X Convegno Nazionale 'L'Ingegneria Sismica in Italia', PotenzaMatera, Italy, Septembe
  26. Lipscombe, P.R. and Pellegrino, S. (1989), 'Rocking' of rigid-block systems under dynamic loads', Allison, I.M. and Ruiz, C. (eds), Applied Solid Mechanics 3, Elsevier, New York, NY, USA
  27. Lipscombe, P.R. and Pellegrino, S. (1993), 'Free rocking of prismatic blocks', J. Eng. Mech., ASCE, 119(7), 1387-1410 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1387)
  28. Makris, N. and Black, C. (2002), 'Uplifting and overturning of equipment anchored to a base foundation', Earthquake Spectra, 18(14),631-661 https://doi.org/10.1193/1.1515730
  29. Makris, N. and Konstantinidis, D. (2003), 'The rocking spectrum and the limitations of practical design methodologies', Earthq. Eng. Struct., 32(2), 265-289 https://doi.org/10.1002/eqe.223
  30. Miranda, E. and Ruiz-Garcia, J. (2002), 'Influence of stiffness degradation on strength demands of structures built on soft soil sites', Eng. Struct., 24(10),1271-1281 https://doi.org/10.1016/S0141-0296(02)00052-4
  31. Mollaioli, F., Bruno, S. and Decanini, L.D. (2002). 'Damage potential of severe long duration acceleration pulses in near-fault records', Proc. ofthe 12th European Con! on Earthquake Engineering, London, UK, September
  32. Ojeda, A. and Escallon, J. (2000), 'Comparison between different techniques for evaluation of predominant periods using strong ground motion records and microtremors in Pereira Colombia', Soil Dyn. Earthq. Eng., 20(1-4), 137-143 https://doi.org/10.1016/S0267-7261(00)00045-2
  33. Omori, F. (1900), Seismic Experiments on the Fracturing and Overturning of Columns. Publications of theEarthquake Investigations Committee in Foreign Languages, Tokyo, Japan, n.4
  34. Papantonopoulos, C., Psycharis, I.N., Papastamatiou, D.Y., Lemos, J.V. and Mouzakis, H.P. (2002), 'Numerical prediction of the earthquake response of classical columns using the distinct element method', Earthq. Eng. Struct., 31(9),1699-1717 https://doi.org/10.1002/eqe.185
  35. Park, Y.J., Ang, H.S. and Wen, Y.K. (1985), 'Seismic damage analysis of reinforced concrete buildings', J. Struct. Eng., ASCE, 111(4), 740-757 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740)
  36. Plaut, R.H., Fielder, W.T. and Virgin, L.N. (1996), 'Fractal behavior of an asymmetric rigid block overturning due to harmonic motion ofa tilted foundation', Chaos Soliton. Fract., 7(2),177-196 https://doi.org/10.1016/0960-0779(95)00059-3
  37. Pompei, A., Scalia, A. and Sumbatyan, M.A. (1998), 'Dynamics of rigid block due to horizontal ground motion', J. Eng. Mech, ASCE, 124(7), 713-717 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(713)
  38. Psycharis, I.N., Papastamatiou, D.Y and Alexandris, A.P. (2000), 'Parametric investigation of the stability of classical columns under harmonic and earthquake excitations', Earthq. Eng. Struct., 29(8), 1093-1109 https://doi.org/10.1002/1096-9845(200008)29:8<1093::AID-EQE953>3.0.CO;2-S
  39. Shenton, H.W III (1996), 'Criteria for initiation of slide, rock, and slide-rock rigid-body modes', J. Eng. Mech., ASCE, 122(7), 690-693 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690)
  40. Shenton, H.W III and Jones, N.P. (1991), 'Base excitation of rigid bodies. I: Formulation', J. Eng. Mech, ASCE, 117(10), 2286-2306 https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2286)
  41. Shi, B., Anooshehpoor, A., Zeng, Y and Brune, J.N. (1996), 'Rocking and overturning of precariously balanced rocks by earthquakes', B. Seismol. Soc. Am., 86(5), 1364-1371
  42. Sinopoli, A. (1987), 'Dynamics and impact in a system with unilateral constraints. The relevance of dry friction', Meccanica, 22(3), 210-215 https://doi.org/10.1007/BF01573814
  43. Sinopoli, A. and Sepe, V. (1993), 'Coupled motion in the dynamic analysis of a three block structure', Appl. Mech Rev., ASME, 46(11), S185-S197 https://doi.org/10.1115/1.3122636
  44. Suherman, S., Plaut, R.H., Watson, L.T. and Thompson, S. (1997), 'Effect of human response time on rocking instability of a two-wheeled suitcase', J. Sound Vib., 207(5), 617-625 https://doi.org/10.1006/jsvi.1997.1141
  45. The MathWorks Inc. (2003), MATLAB, Natick, MA, USA
  46. Tocci, C. (1996), 'Dinamica Delle Strutture a Blocchi Sovrapposti. Le Colonne Isolate', Ph.D. Dissertation, Universita 'La Sapienza', Rome, Italy
  47. Trifunac, M.D. and Brady, A.G (1975), 'A study on the duration of strong earthquake ground motion', B. Seismol. Soc. Am., 65(3),581-626
  48. Virgin, L.N., Fielder, W.T. and Plaut, R.H. (1996), 'Transient motion and overturning of a rocking block on a seesawing foundation', J. Sound Vib., 191(1),177-187 https://doi.org/10.1006/jsvi.1996.0114
  49. Yim, C.S., Chopra, A.K. and Penzien, J. (1980), 'Rocking response of rigid blocks to earthquakes', Earthq. Eng. Struct., 8(6), 565-587 https://doi.org/10.1002/eqe.4290080606

Cited by

  1. The relevance of energy damping in unreinforced masonry rocking mechanisms. Experimental and analytic investigations vol.9, pp.5, 2011, https://doi.org/10.1007/s10518-011-9291-1
  2. Horizontally restrained rocking blocks: evaluation of the role of boundary conditions with static and dynamic approaches vol.15, pp.1, 2017, https://doi.org/10.1007/s10518-016-9967-7
  3. Comparison between rocking analysis and kinematic analysis for the dynamic out-of-plane behavior of masonry walls vol.44, pp.13, 2015, https://doi.org/10.1002/eqe.2592
  4. Application of predictive models to assess failure of museum artifacts under seismic loads vol.23, 2017, https://doi.org/10.1016/j.culher.2016.10.001
  5. Analytical Study of Mobile Home Response to the 2014 South Napa Earthquake vol.32, pp.1, 2016, https://doi.org/10.1193/020215EQS019
  6. The rocking response of large flexible structures to earthquakes vol.12, pp.2, 2014, https://doi.org/10.1007/s10518-013-9538-0
  7. Seismically induced one-sided rocking response of unreinforced masonry façades vol.30, pp.8, 2008, https://doi.org/10.1016/j.engstruct.2007.02.021
  8. Force reduction factor for out-of-plane simple mechanisms of masonry structures vol.15, pp.3, 2017, https://doi.org/10.1007/s10518-016-9976-6
  9. Study of rocking motion of rigid body with slide contact vol.23, pp.4, 2009, https://doi.org/10.1007/s12206-009-0329-0
  10. The performance of churches in the 2012 Emilia earthquakes vol.12, pp.5, 2014, https://doi.org/10.1007/s10518-013-9519-3
  11. Behavior of Special Hospital Equipments as Rigid Block with Mass Eccentricity Subjected to Horizontal Component of Ground Motion vol.199, 2017, https://doi.org/10.1016/j.proeng.2017.09.040
  12. The behaviour of vernacular buildings in the 2012 Emilia earthquakes vol.12, pp.5, 2014, https://doi.org/10.1007/s10518-013-9455-2
  13. Out-of-plane behaviour of a full-scale stone masonry façade. Part 1: specimen and ground motion selection 2013, https://doi.org/10.1002/eqe.2313
  14. Overturning of rigid blocks for earthquake excitation 2017, https://doi.org/10.1007/s10518-017-0238-z
  15. Review of Out-of-Plane Seismic Assessment Techniques Applied To Existing Masonry Buildings 2016, https://doi.org/10.1080/15583058.2016.1237586
  16. Methods and Challenges for the Seismic Assessment of Historic Masonry Structures 2016, https://doi.org/10.1080/15583058.2016.1238976
  17. Out-of-plane seismic behaviour of rocking masonry walls vol.41, pp.5, 2012, https://doi.org/10.1002/eqe.1168
  18. Simulation of masonry out-of-plane failure modes by multi-body dynamics vol.44, pp.14, 2015, https://doi.org/10.1002/eqe.2596
  19. Observations of Out-of-Plane Rocking in the Oratory of San Giuseppe Dei Minimi during the 2009 L’Aquila Earthquake vol.621, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.621.101
  20. Experimental Investigation of Energy Damping in Masonry Mechanisms vol.621, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.621.137
  21. Rocking Response Analysis of Self-Centering Walls under Ground Excitations vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/4371585
  22. In situ free-vibration tests on unrestrained and restrained rocking masonry walls vol.47, pp.15, 2018, https://doi.org/10.1002/eqe.3119
  23. Dynamic response of rocking cracked masonry walls pp.1572-9648, 2019, https://doi.org/10.1007/s11012-019-00949-w
  24. The vertical spanning strip wall as a coupled rocking rigid body assembly vol.29, pp.4, 2006, https://doi.org/10.12989/sem.2008.29.4.433
  25. Fragility curves for free and restrained rocking masonry façades in one-sided motion vol.164, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.03.003
  26. The rocking: a resource for the side strength of masonry structures vol.14, pp.5, 2006, https://doi.org/10.2140/jomms.2019.14.751
  27. Modelling rocking response via equivalent viscous damping vol.48, pp.11, 2019, https://doi.org/10.1002/eqe.3182
  28. Analytical and numerical study of curved-base rocking walls vol.197, pp.None, 2006, https://doi.org/10.1016/j.engstruct.2019.109397
  29. Overturning risk of furniture in earthquake-affected areas vol.26, pp.5, 2006, https://doi.org/10.1177/1077546319879537
  30. Rocking Response of Unanchored Building Contents Considering Horizontal and Vertical Excitation vol.146, pp.9, 2006, https://doi.org/10.1061/(asce)st.1943-541x.0002735
  31. Fragility curves for toppling of railroad locomotives vol.36, pp.4, 2006, https://doi.org/10.1177/8755293020919437