• Title/Summary/Keyword: pdc process

Search Result 20, Processing Time 0.023 seconds

Adopting Production System in Cognitive Psychology to Improve the Extraction Process of Persuasive Design Characteristics for Healthcare-related Applications

  • Zhang, Chao;Wan, Lili
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.25-42
    • /
    • 2018
  • Purpose The purpose of this study focused on adopting production systems in cognitive psychology to improve the extraction process of persuasive design characteristics for healthcare-related mobile applications. Design/Methodology/Approach A research approach with four stages was developed. We developed and updated the evaluation guideline for persuasive design characteristics (PDC). We tried to summarize and analyze each of 28 PDC and prepared related production rules. Verification process for both guideline approach and production system approach were performed. Top one hundred apps from both medical category and health and Fitness category were selected and evaluated by two approaches. By comparing the results of the two approaches, we tried to explain the improvement and reliability of introducing the production system in the PDC extraction process. Findings Based on the updated guideline for healthcare-related mobile applications, a production system in cognitive psychology was developed. By comparing the PDC extraction results by two approaches, production system showed a better improvement for evaluation precision and efficiency for decision-making process. The findings of this study can be used for researchers and app developers to apply production system to analyze, evaluate, and develop better healthcare-related apps with persuasion.

Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC) (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 열충격 특성에 미치는 다이아몬드 입자 비율의 영향)

  • Kim, Ji-Won;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.111-115
    • /
    • 2015
  • This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a $12{\sim}22{\mu}m$- and $8{\sim}16{\mu}m$-sized main particles, and $1{\sim}2{\mu}m$-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향)

  • Kim, Ji-Won;Baek, Min-Seok;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Dielectric passivation effects on the electromigration phenomena in Al-1%Si thin film interconnections (A1-1%Si 박막배선에서 엘렉트로마이그레이션 현상에 미치는 절연보호막 효과)

  • 김경수;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.27-30
    • /
    • 2001
  • Electromigration Phenomena in Al-1%Si thin film interconnections under DC and PDC conditions were investigated. Thin film interconnections with $SiO_2$ and PSG/$SiO_2$ dielectric passivation layer were formed by a standard photolithography process method and test line lengths were 100, 400, 800, 1200, and 1600 $\mu\textrm{m}$. The current density of $1.19\times10^7\textrm{A/cm}^2$ was stressed in Al-1%Si thin film interconnections under DC condition. The current density of $1.19\times10^7\textrm{A/cm}^2$ was also applied under PDC condition at the frequency of 1 Hz with the duty factor of 0.5. The electromigration resistance of PSG/SiO2 dielectric passivation test line was stronger than $SiO_2$ dielectric passivation test line. The lifetime under PDC was 2-4 times longer than DC condition. As the thin film interconnection line increased, the lifetime decreased and saturated over the critical length. Failure patterns by an electromigration were dominated by void-induced electrical open and hillock-induced electrical short.

  • PDF

An Offset and Deadzone-Free Constant-Resolution Phase-to-Digital Converter for All-Digital PLLs (올-디지털 위상 고정 루프용 오프셋 및 데드존이 없고 해상도가 일정한 위상-디지털 변환기)

  • Choi, Kwang-Chun;Kim, Min-Hyeong;Choi, Woo-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.122-133
    • /
    • 2013
  • An arbiter-based simple phase decision circuit (PDC) optimized for high-resolution phase-to-digital converter made up of an analog phase-frequency detector and a time-to-digital converter for all-digital phase-locked loops is proposed. It can distinguish very small phase difference between two pulses even though it consumes lower power and has smaller input-to-output delay than the previously reported PDC. Proposed PDC is realized using 130-nm CMOS process and demonstrated by transistor-level simulations. A 5-bit P2D having no offset nor deadzone using the PDC is also demonstrated. A harmonic-lock-free and small-phase-offset delay-locked loop for fixing the P2D resolution regardless of PVT variations is also proposed and demonstrated.

Study on Electrically Assisted Pressure Solid State Joining Between Aluminum Alloys (통전압접을 활용한 알루미늄 소재 간 고상접합에 관한 연구)

  • Choi, H.;Lee, S.;Kim, Y.;Hong, S.T;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.337-343
    • /
    • 2022
  • Electrically assisted pressure joining (EAPJ) utilizes electric current-induced kinetic enhancement to achieve solid state diffusion bonding within a short time. In this study, aluminum alloy specimens, which are known as a hard-to-weld metal, were successfully solid-state joined through EAPJ. The bonding process was performed in two ways: continuous direct current (CDC), which applies relatively low current density, and pulsed direct current (PDC), which applies high current density. It was observed that the bonding strength was higher in PDC than in CDC. The microstructure of the joint was characterized using 3D X-ray microscopy (XRM) and electron backscatter diffraction (EBSD).

The Functional Effects of Polyester treated with silk sericin (견 세리신을 이용한 폴리에스텔의 기능성 향상)

  • 김종호;김영대;강경돈;우순옥;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.1
    • /
    • pp.37-41
    • /
    • 2002
  • The attaching treatment of sericin onto polyester fiber was attempted to improve its sanitary properties. Generally, sericin, a gummy material covering the outer layer of silk filament, is subjected to be removed during degumming process of silk textile process. For this study, sericin particle dissolved within the degumming waste water could be collected by sedimentation of polyaluminium chloride. It was revealed that sericin particle were attached onto the surface of polyester fiber evenly by treatment of glutaraldehyde, a crosslinking agent. A frictional static charge of the treated polyester fabric could be improved, while its hygroscopic property was little changed.

Effect of DP Finishing Conditions on the Mechanical Properties and Hand of Cotton Fabrics (DP 가공조건이 면직물의 역학적 성질과 태에 미치는 영향)

  • 신윤숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.440-447
    • /
    • 2000
  • The effects of DP finishing conditions including process technique and finishing agent on the mechanical properties and hand of cotton fabrics were investigated. 100% cotton fabrics were treated with NMA/DMDHEU and NMA/YF using wet-fixation and steam-fixation process. For comparison, conventional pad-dry-cure process was used with DMDHEU. After DP finishing, tensile and compressional resilience increased and bending hysteresis decreased, resulting in the improvement of dimensional stability of cotton fabric. WF and SF process rendered fabrics better shear properties, tensile energy, and compressional linearity and energy than PDC process. However, SF process produced fabrics with higher geometrical roughness than WF process. After DP finishing, primary hand values except Koshi increased, resulting in the increase of total hand value of cotton fabric.

  • PDF

A Design of CMOS Multi-Mode Baseband Filter with New Automatic Tuning (새로운 자동 튜닝 기능을 가지고 있는 CMOS 다중 모드 기저 대역 필터의 설계)

  • Lee Kang-Yoon;Ku Hyunchul;Hur Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.34-41
    • /
    • 2006
  • This paper presents a CMOS multi-mode baseband filter architecture to support PDC/GSM/EDGE/WCDMA and its new automatic tuning method. 5-th order Chebyshev low pass filter is designed for implementing the baseband channel-select filter. Capacitors and resistors were shared efficiently between modes to minimize the area. And, the new cut-off frequency tuning method is proposed to compensate the process variation. This method can reduce the area and the noise level due to MOS switches.