• Title/Summary/Keyword: payloads

Search Result 248, Processing Time 0.019 seconds

RIDS: Random Forest-Based Intrusion Detection System for In-Vehicle Network (RIDS: 랜덤 포레스트 기반 차량 내 네트워크 칩입 탐지 시스템)

  • Daegi, Lee;Changseon, Han;Seongsoo, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2022
  • This paper proposes RIDS (Random Forest-Based Intrusion Detection), which is an intrusion detection system to detect hacking attack based on random forest. RIDS detects three typical attacks i.e. DoS (Denial of service) attack, fuzzing attack, and spoofing attack. It detects hacking attack based on four parameters, i.e. time interval between data frames, its deviation, Hamming distance between payloads, and its diviation. RIDS was designed in memory-centric architecture and node information is stored in memories. It was designed in scalable architecture where DoS attack, fuzzing attack, and spoofing attack can be all detected by adjusting number and depth of trees. Simulation results show that RIDS has 0.9835 accuracy and 0.9545 F1 score and it can detect three attack types effectively.

A Study on the Optimization of the Design of Power Electric Ground Support Equipment according to the Increase in Power Demand due to the Increase in Satellite Power Demand and the Advancement of Satellite Payload (위성 탑재체 고도화에 따른 위성 전력요구도 증가 및 전력요구도 증가에 따른 전력계 전기지상지원장비 설계 최적화를 위한 고찰)

  • Su-Wan Bang;Hyoung-Ho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 2023
  • KOMPSAT (Korean Multi-Purpose Satellite) is a Low-Earth-Orbit (LEO) satellite under development in Korea. Its performance has been steadily improving. At this time, power demand of the payload increased according to performance improvement of the payload. Accordingly, design of the satellite, such as design of the internal power supply device and the configuration of the solar array, was changed. Thus, many considerations are required according to an increase in power when designing power EGSE (Electric Ground Support Equipment) for supplying power to satellites and conduct satellite integration tests. This paper deals with matters to be considered when designing power EGSE according to changes in satellite power requirements according to payloads and increase in power requirements.

Recent progress of enzyme cleavable linker in antibody-drug conjugates: sulfatase and phosphatase

  • Sushil K. Dwivedi;Abhinav Bhise;Rajkumar Subramani;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Recently, antibody-drug conjugates (ADCs) are used to deliver efficient cytotoxic payloads selectively in cancer cells. In the designing of an ADC, the antibody is connected to a toxic payload via a covalent linker, which helps to solubilizes the typical hydrophobic payload as well as stabilizes the linkage over circulation. The development of the linkers for the antibody drug conjugate is still in demand. Initially, the acid, disulfide, and cathepsin-sensitive ADCs attracted considerable attention for the delivery of a potent cytotoxic payload but suffer from instability in human and mouse plasma with a short half-life. In addition, It also suffer from a solubility issue that induces aggregation, which is the major problem in their development. ADCs associated with sulfatase and phosphatase cleavable linker are highly soluble due to the anionic nature of sulfate and phosphate groups. The ADCs also showed high stability in human and mouse plasma. Therefore, to overcome these limitations, sulfatase and phosphatase cleavable linkers were developed. This review focuses on the recently reported advantages of sulfatase and phosphatase cleavable linkers for ADCs.

Drone Flight Record Forensic System through DUML Packet Analysis (DUML 패킷 분석을 통한 드론 비행기록 포렌식 시스템)

  • YeoHoon Yoon;Joobeom Yun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • In a situation where drone-related crimes continue to rise, research in drone forensics becomes crucial for preventing and responding to incidents involving drones. Conducting forensic analysis on flight record files stored internally is essential for investigating illegal activities. However, analyzing flight record files generated through the exclusive DUML protocol requires a deep understanding of the protocol's structure and characteristics. Additionally, a forensic analysis tool capable of handling cryptographic payloads and analyzing various drone models is imperative. Therefore, this study presents the methods and characteristics of flight record files generated by drones. It also explains the structure of the flight record file and the features of the DUML packet. Ultimately, we conduct forensic analysis based on the presented structure of the DUML packet and propose an extension forensic analysis system that operates more universally than existing tools, performing expanded syntactic analysis.

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.

GaN HPA Monolithic Microwave Integrated Circuit for Ka band Satellite Down link Payload (Ka 대역 위성통신 하향 링크를 위한 GaN 전력증폭기 집적회로)

  • Ji, Hong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8643-8648
    • /
    • 2015
  • In this paper presents the design and demonstrate 8 W 3-stage HPA(High Power Amplifier) MMIC(Monolithic Microwave Integrated Circuits) for Ka-band down link satellite communications payload system at 19.5 GHz ~ 22 GHz frequency band. The HPA MMIC consist of 3-stage GaN HEMT(Hight Electron Mobility Transistors). The gate periphery of $1^{st}$ stage, $2^{nd}$ stage and output stage is determined $8{\times}50{\times}2$ um, $8{\times}50{\times}4$ um and $8{\times}50{\times}8$ um, respectively. The fabricated HPA MMIC shows size $3,400{\times}3,200um^2$, small signal gain over 29.6 dB, input matching -8.2 dB, output matching -9.7 dB, output power 39.1 dBm and PAE 25.3 % by using 0.15 um GaN technology at 20 V supply voltage in 19.5~22 GHz frequency band. Therefore, this HPA MMIC is believed to be adaptable Ka-band satellite communication payloads down link system.

Construction of real-time remote ship monitoring system using Ka-band payload of COMS (천리안 위성통신을 이용한 실시간 원격 선박 모니터링 체계 구축)

  • Jeong, Jaehoon;Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • Communication, Ocean and Meteorological Satellite (COMS) was launched in 2010 with three payloads that include Ka-band communication payload developed by Ministry of Science, ICT and Future Planning (MSIP) and Electronics and Telecommunications Research Institute (ETRI). This study introduces a real-time remote vessel monitoring system built in the Socheongcho Ocean Research Station using the Ka-band communication satellite. The system is composed of three steps; real-time data collection, transmission, and processing/visualization. We describe hardware (H/W) and software systems (S/W) installed to perform each step and the whole procedure that made the raw data become vessel information for a real-time ocean surveillance. In addition, we address functional requirements of H/W and S/W and the important considerations for successful operation of the system. The system is now successfully providing, in near real-time, ship information over a VHF range using AIS data collected in the station. The system is expected to support a rapid and effective surveillance over a huge oceanic area. We hope that the concept of the system can be fully used for real-time maritime surveillance using communication satellite in future.

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.

Integrated Ray Tracing Model for In-Orbit Optical Performance Simulation for GOCI (통합적 광추적 모델에 의한 해양탑재체 GOCI의 궤도 상 광학 성능 검증)

  • Ham, Seon-Jeong;Lee, Jae-Min;Kim, Seong-Hui;Yun, Hyeong-Sik;Gang, Geum-Sil;Myeong, Hwan-Chun;Kim, Seok-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • GOCi (Geostationary Ocean Color Imager) is one of the COMS payloads that KARI is currently developing and scheduled to be in operation from around 2008. Its primary objective is to monitor the Korean coastal water environmental condition. We report the current progress in development of the integrated optical model as one of the key analysis tools for the GOCI in-orbit performance verification. The model includes the Sun as the emitting light source. The curved Earth surface section of 2500 km x 2500 km includingthe Korean peninsular os defined as a Lambertian scattering surface consisted of land and sea surface. From its geostationary orbit, the GOCI optical system observes the reflected light from the surfaces with varying reflectance representing the changes in its environmental conditions. The optical ray tracing technique was used to demonstrate the GOCI in-orbit performances such as red tide detection. The computational concept, simulation results and its implications to the on-going development of GOCI are presented.

  • PDF

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.