DOI QR코드

DOI QR Code

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier

약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가

  • BAE, J.Y. (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • OH, E.S. (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • AHN, H.J. (Department of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • KEY, Jaehong (Department of Biomedical Engineering, College of Health Sciences, Yonsei University)
  • 배장열 (연세대학교 보건과학대학 의공학부) ;
  • 오은설 (연세대학교 보건과학대학 의공학부) ;
  • 안혁주 (연세대학교 보건과학대학 의공학부) ;
  • 기재홍 (연세대학교 보건과학대학 의공학부)
  • Received : 2016.09.21
  • Accepted : 2017.01.03
  • Published : 2017.02.28

Abstract

Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

우리가 예상했던 DPNs의 지름은 약 500 nm였으며 이는 SEM과 AFM 영상, Size Distribution을 통해 기대했던 것과 유사한 크기를 가진다는 것을 확인하였다. 또한, Zeta potential은 약 $-17.8{\pm}4.4mV$으로 측정되었다. Zeta potential이 +30 mV이상이면 강한 양성을 띤다고 한다. 나노 입자의 Zeta potential이 강한 양성이면 nonspecific cellular interaction이 높아지지만 간에 의해 쉽게 제거되며, hemolytic activity가 높아지기 때문에 약물 전달을 하기에 적합하지 않은 것으로 알려져 있다. 또한 강한 음성이어도 간에 의해 제거될 확률이 높아진다. 하지만 나노 입자의 Zeta potential이 중성이거나 약한 전하를 띠면 혈액에서 제거가 잘 되지 않아 혈액에 오랫동안 남을 수 있어 약물전달에 유리하고, 약 -15 mV의 전하를 띤 입자는 tumor site에 high accumulation됨이 알려져 있다[14]. DPNs의 경우 $-17.8{\pm}4.4mV$이므로 인체에 적용하기에 적합한 것으로 판단된다. DPNs의 Encapsulation Efficiency는 약 $43.8{\pm}6.6%$로 Nano-precipitation과 같은 Bottom-up 방식보다 낮은 수치를 나타내었지만, 독성이 강한 Salinomycin을 사용함으로써 이를 해결할 수 있을 것으로 생각되며 적은 양의 약물만으로 항암효과를 나타낼 수 있을 것으로 기대된다. 암세포와 함께 배양했을 때 형광 현미경으로 확인해본 결과 암세포 주변에 나노 입자가 이동한 것으로 보아 Targeting ligand나 Peptide, Aptamer를 이용하면 더욱 정확한 암세포 표적화를 이룰 수 있을 것으로 예상된다[15]. DPNs의 Drug Carrier로서의 평가는 Loading Amount와 Drug Releasing Profile을 통해 추가로 검증을 할 예정이며, Cell viability를 실행하여 DPNs의 In vitro 항암 효과를 확인하고 In vivo 실험을 진행할 예정이다.

Keywords

References

  1. National Cancer Information Center, "Statistics of Cancer mortality, 2013.
  2. O.C. Farokhzad and R. Langer, "Impact of nanotechnology on drug delivery." ACS Nano, vol. 3, no. 1, pp. 16-20, 2009. https://doi.org/10.1021/nn900002m
  3. J. Fang, H. Nakamura and H. Maeda, "The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect." Advanced Drug Delivery Reviews, vol. 63, no. 3, pp. 136-151, 2011. https://doi.org/10.1016/j.addr.2010.04.009
  4. K.N. Park, "Facing the truth about nanotechnology in drug delivery.", ACS Nano, vol. 7, no. 9, pp. 7442-7447, 2013. https://doi.org/10.1021/nn404501g
  5. Prabhakar, Uma, et al. "Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology." Cancer research 73.8 (2013): 2412-2417. https://doi.org/10.1158/0008-5472.CAN-12-4561
  6. E. Blanco, H. Shen and M. Ferrari, "Principles of nanoparticle design for overcoming biological barriers to drug delivery.", Nature biotechnology, vol. 33, no. 9, pp. 941-951, 2015. https://doi.org/10.1038/nbt.3330
  7. J.H. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D.D. Mascolo, E. DeRosa, M.J. Cho, Y.J. Lee and P. Decuzzi, "Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors.", ACS Nano, vol. 9, pp. 11628-11641, 2015. https://doi.org/10.1021/acsnano.5b04866
  8. J.Y. Bae, E.S. Oh, H. Lee and J.H. Key, "Improved manufacturing method of discoidal nanoparticles for cancer theranostics.", Journal of Biomedical Engineering Reasearch, vol. 37, pp. 46-52, 2016. https://doi.org/10.9718/JBER.2016.37.1.46
  9. J.H. Key, S. Aryal, F. Gentile, J.S. Ananta, M. Zhong, M.D. Landis and P. Decuzzi, "Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging.", Biomaterials, vol. 34, pp. 5402-5410, 2013. https://doi.org/10.1016/j.biomaterials.2013.03.078
  10. P.B. Gupta, T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg and E.S. Lander, "Identification of selective inhibitors of cancer stem cells by high-throughput screening.", Cell, vol. 138, no. 4, pp. 645-659, 2009. https://doi.org/10.1016/j.cell.2009.06.034
  11. R. Aydyn, "Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting.", Journal of Biomedical Materials Research Part A, vol. 101, no. 5, pp. 1405-1415, 2013.
  12. J. Jiang, H. Chen, C. Yu, Y. Zhang, M. Chen, S. Tian and C. Sun, "The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA noanoparticles.", Nanomedicine, vol. 10, no. 12, pp. 1863-1879, 2015. https://doi.org/10.2217/nnm.15.43
  13. R. S. Tl ll Aydyn, G. Kaynak and M. Gumu derelio lu, "Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells.", Journal of Biomedical Materials Research Part A, vol. 104, no. 2, pp. 455-464, 2016. https://doi.org/10.1002/jbm.a.35591
  14. Sadat, Sams MA, Sheikh Tasnim Jahan, and Azita Haddadi. "Effects of Size and Surface Charge of Polymeric Nanoparticles on in Vitro and in Vivo Applications." Journal of Biomaterials and Nanobiotechnology 7.02 (2016): 91. https://doi.org/10.4236/jbnb.2016.72011
  15. R.A. Petors and J.M. Desimone, "Strategies in the design of nanoparticles for therapeutic applications.", Nature reviews Drug discovery, vol. 9, no. 8, pp. 615-627, 2010. https://doi.org/10.1038/nrd2591