• 제목/요약/키워드: pathogenic microorganisms

검색결과 408건 처리시간 0.091초

Recent Insights in the Removal of Klebseilla Pathogenicity Factors for the Industrial Production of 2,3-Butanediol

  • Shrivastav, Anupama;Lee, Jinwon;Kim, Hae-Yeong;Kim, Young-Rok
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.885-896
    • /
    • 2013
  • 2,3-Butanediol (2,3-BDO) has immense industrial applications. Recently, microbial fermentation has emerged as an alternative way to produce this industrially important chemical. Although 2,3-BDO is produced by several microorganisms, the Klebsiella genera has an excellent production compared with other 2,3-BDO-producing microorganisms. In order to produce 2,3-BDO on a large scale, the challenges of removing pathogenic factors from Klebsiella pneumoniae need to be addressed. K. pneumoniae produces a number of virulence factors that contribute to its pathogenesis, including lipopolysaccharides, capsules, fimbrial adhesins, etc. Removal of these pathogenic factors from 2,3-BDO-producing Klebsiella strains will result in avirulent strains for the safe, economic, and efficient production of 2,3-BDO. In this review, we summarize the current trends in 2,3-BDO production using K. pneumoniae and insights into the removal of its virulence factors for industrial applications.

소와 돼지 도체 표면의 미생물 오염도 및 병원성 미생물 검색 (Survey of microbiological quality and detection of pathogenic microorganisms on the surface of slaughted beef and pork products)

  • 나인택;임홍규;조미영;이양수;이병동
    • 한국동물위생학회지
    • /
    • 제25권1호
    • /
    • pp.9-14
    • /
    • 2002
  • This survey was conducted to evaluate the microbiological quality and to detect of pathogenic microorganisms on the surface of slaughtered beef and pork products in two abattoirs located in Seoul from January 2001 through December 2001. Two hundred and twenty-five beef and 215 hog were surveyed for microbiological quality and 630 beef and 625 hog were detected for pathogenic microorgainsms. 1. The prevalence level on number of standard plate count(SPC) less than $10^4$cfu/$cm^2$in beef and hog were 89.8% and 90.7%, respectively. 2. Escherichia coli less than $10^2$cfu/$cm^2$ in beef and less than $10^3$cfu/$cm^2$ in hog were 98.2% and 99% 3. E coli 0157:H7 was recovered from 2 beef carcasses(0.32%), and Staphylococcus aureus from 12 pork carcasses(1.90%), Listeria monocytogenes from 1 beef and 4 pork carcasses (0.15%, 0.64%) and clostridium perfringens from 14 beef and 11 pork carcasses(2.22%, 1.76%), respectively.

국내 유통 김(Porphyra sp.)의 미생물 오염도 평가 (Microbial Contamination Levels in Porphyra sp. Distributed in Korea)

  • 노보영;황선혜;조용선
    • 한국수산과학회지
    • /
    • 제52권2호
    • /
    • pp.180-184
    • /
    • 2019
  • Aerobic bacteria, coliforms, Escherichia coli, and pathogenic bacteria were investigated in laver Porphyra sp. samples from various regions of Korea. The mean bacterial counts were $6.9{\pm}0.87log\;CFU/g$ (range 4.0 to 7.7) log CFU/g in dried laver, $2.83{\pm}4.36log\;CFU/g$ in roasted laver, and $4.93{\pm}1.43log\;CFU/g$ in seasoned laver. Coliforms were most abundant (mean count: $2.1{\pm}1.01log\;CFU/g$) in dried laver. No pathogenic bacteria, including Staphylococcus aureus, Salmonella spp. Vibrio parahaemolyticus, or Listeria monocytogenes, were detected in any of the samples. Aerobic microorganisms were the most diverse microorganisms in dried laver. Staphylococcus spp. were predominant, but S. aureus was not detected. Standardization of laver production is necessary to ensure a hygienic product because laver products are often ingested without heating or cooking, and the production process is simple.

Synergistic Growth Inhibition of Herbal Plant Extract Combinations against Candida albicans

  • Jeemin YOON;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권2호
    • /
    • pp.145-156
    • /
    • 2023
  • Many skin diseases are caused by microbial infections. Representative pathogenic fungus and bacterium that cause skin diseases are Candida albicans and Staphylococcus aureus, respectively. Malassezia pachydermatis is a fungus that causes animal skin diseases. In this study, we propose a method for removing pathogenic microorganisms from the skin using relatively safe edible herbal extracts. Herbal extracts were screened for skin health through the removal of pathogenic microorganisms, and combinations for effective utilization of the screened extracts were identified. In this study, among methanol extracts of 240 edible plants, C. albicans, S. aureus, and M. pachydermatis were killed by extracts of 10 plants: Acori Gramineri Rhizoma, Angelicae Tenuissimae Radix, Cinnamomi Cortex, Cinnamomi Ramulus, Impatientis Semen, Magnoliae Cortex, Moutan Cortex Radicis, Phellodendri Cortex, Scutellariae Radix, and Syzygii Flos. By evaluating the synergistic antifungal activities against C. albicans using all 45 possible combinations of these 10 extracts, five new synergistic antifungal combinations, Acori Gramineri Rhizoma with Magnoliae Cortex extracts, Acori Gramineri Rhizoma with Phellodendri Cortex extracts, Angelicae Tenuissimae Radix with Magnoliae Cortex extracts, Magnoliae Cortex with Phellodendri Cortex extracts, and Phellodendri Cortex with Syzygii Flos extracts, were identified. By utilizing the selected extracts and five combinations with synergistic antifungal effects, this work provides materials and methods to develop new and safe methods for treating candidiasis using natural products.

Antibacterial Activities of Phenolic Components from Camellia sinensis L. on Pathogenic Microorganisms

  • Shin, Jung-Sook;Chung, Ha-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제12권3호
    • /
    • pp.135-140
    • /
    • 2007
  • Antibacterial activities of the major phenolic components from Camellia sinensis L. were investigated against several pathogenic microorganisms including Gram-positive strains like Staphylococcus aureus ATCC 29213 and Streptococcus pyogens 308A; and Gram-negative strains like Escherichia coli ATCC 25922, Escherichia coli 078, Pseudomonas aeruginosa 9027, and Enterobacter cloacae 1321E. The MIC values demonstrate that both (-)-epicatechin and (-)-epigallocatechin were more considerably toxic against Staphylococcus aureus ATCC 29213 than the other two catechins like (-)-epicatechingallate and (-)-epigallocatechin-3-gallate. (-)-Epicatechingallate and (-)-epigallocatechin-3-gallate were most inhibitory against Escherichia coli ATCC 25922. As a result, (-)-epicatechin showed predominant antibacterial activities among tea varieties. The contents of major polyphenolic components such as four catechins, theaflavin, and quercetin were different according to fermentation processes. The total contents of four catechins were ranged from 13.81 to 1.33%, with (-)-epigallocatechin-3-gallate being dominant among tea varieties; theaflavin was found the characteristic pigment in fully-fermented black tea.

Lantibiotics, Class I Bacteriocins from the Genus Bacillus

  • Lee, Hyung-Jae;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.229-235
    • /
    • 2011
  • Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.

소규모 돼지도축공정에서 도체오염 미생물의 변화 (Microbial change of pork carcass during processing in small size slaughterhouse)

  • 홍종해;이경환;이성모
    • 한국동물위생학회지
    • /
    • 제25권1호
    • /
    • pp.31-37
    • /
    • 2002
  • Major hazards existed in slaughterhouse are pathogenic microorganisms originated from intestinal microflora of slaughtered animals. This study was intended for the identification of microbial contamination sources during pork slaughtering in small plants. Total aerobic bacteria, Coliform group, Salmonella spp, Listeria monocytogenes, and Campylobacter jejuni/coli were isolated from the surface sample of pork carcasses. Contamination level among different sampling points of ham, belly and neck did not showed statistical differences. Therefore, the mixed sampling from belly and neck of carcass could be effective for microbiological monitoring. Isolation rates of pathogenic microorganisms showed Salmonella spp 20.9%, Listeria monocytogenes 10.5%, and Campylobacter jejuni/coli 8.1% from 296 sampling points. High prevalence rate of Salmonella spp indicated that the contamination of intestinal microflora occurred due to unsanitary processing control, which required HACCP system in small plants. It was recommended that the prerequisite program should be a key factor for a successful HACCP system implementation especially in small size slaughterhouse.

Principles and Applications of Non-Thermal Technologies for Meat Decontamination

  • Yewon Lee;Yohan Yoon
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.19-38
    • /
    • 2024
  • Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.

미생물 검침을 위한 고체 배지 임피던스 센서 (Solid medium integrated impedimetric biosensor for detection of microorganisms)

  • 최아미;박재성;정효일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1629-1632
    • /
    • 2008
  • Rapid, real-time detection of pathogenic microorganisms is an emerging and quickly evolving field of research, especially with regard to microorganisms that pose a major threat to public health. Herein, a new method that uses bioimpedance and solid culture medium for the real-time detection of microorganisms is introduced. We fabricated a new impedimetric biosensor by integrating solid media and two plane electrodes attached on two facing sides of an acryl well. During bioelectrical impedance analysis, the solid medium showed the characteristics of a homogenous conductive material. In a real-time impedance measurement, our solid-medium biosensor could monitor bacterial growth in situ with a detection time of ${\sim}4$ hrs. Our data indicate that the solid-medium biosensor is useful for detecting airborne microorganisms, thereby providing a new analytical tool for impedance microbiology.

  • PDF

Real-time PCR을 이용한 임플란트주위염 원인균의 정량적 분석 (Quantitative detection of peri-implantitis bacteria using real-time PCR)

  • 김민정;한경순
    • 한국치위생학회지
    • /
    • 제21권5호
    • /
    • pp.555-565
    • /
    • 2021
  • Objectives: This study was conducted to analyze peri-implantitis bacteria and identify their associations with health status and health activities. Methods: Gingival sulcus fluid at the implant's periodontal pockets sampled from the participants were analyzed by multiplex real time PCR. Results: Participants had strains in the order of 100% F. nucleatum, 98.0% E. corrodens, and 96.0% P. micra, and the correlation between C. rectus and E. nodatum was high (p<0.01). Diabetic group (P. gingivalis, P. nigrescens) hypertension (P. nigrescens), group with four or more periodontal pockets (P. gingivalis, T. dentica, P. intermedia, E. nodatum, and C. rectum), smoking (P. micra, E. corrodens), drinking (T. dentola), and scaling groups (C. rectus) were found to have more strains (p<0.05). Conclusions: Representative pathogenic microorganisms detected in periodontal pockets of implants were similar to dental periodontal pockets; however there were differences in the amount and distribution of microorganisms, and they were affected by health status and health behavior.