Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10017

Lantibiotics, Class I Bacteriocins from the Genus Bacillus  

Lee, Hyung-Jae (Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University)
Kim, Hae-Yeong (Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.3, 2011 , pp. 229-235 More about this Journal
Abstract
Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.
Keywords
Antimicrobial peptides; bacteriocins; lantibiotics; ribosomally synthesized; Bacillus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI   ScienceOn
2 Zheng, G., L. Z. Yan, J. C. Vederas, and P. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355.
3 Stein, T., S. Heinzmann, P. Kiesau, B. Himmel, and K. D. Entian. 2003. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 47: 1627-1636.   DOI   ScienceOn
4 Storm, D. R., K. S. Rosenthal, and P. E. Swanson. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763.   DOI   ScienceOn
5 Thomson, J. M. and R. A. Bonomo. 2005. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: Betalactams in peril! Curr. Opin. Microbiol. 8: 518-524.   DOI   ScienceOn
6 Tossi, A., L. Sandri, and A. Giangaspero. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30.   DOI   ScienceOn
7 Twomey, D., R. P. Ross, M. Ryan, B. Meaney, and C. Hill. 2002. Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie Van Leeuwenhoek 82: 165-185.   DOI
8 Walsh, C. 2003. Section II: Validated targets and major antibiotic classes. In: Antibiotiotics: Actions, Origins, Resistance. ASM Press.
9 Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55.   DOI   ScienceOn
10 Severinov, K., E. Semenova, A. Kazakov, T. Kazakov, and M. S. Gelfand. 2007. Low-molecular-weight post-translationally modified microcins. Mol. Microbiol. 65: 1380-1394.   DOI   ScienceOn
11 Shai, Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66: 236-248.   DOI   ScienceOn
12 Siegers, K., S. Heinzmann, and K. D. Entian. 1996. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J. Biol. Chem. 271: 12294-12301.   DOI
13 Siezen, R. J., O. P. Kuipers, and W. M. de Vos. 1996. Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69: 171-184.   DOI   ScienceOn
14 Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.   DOI   ScienceOn
15 Stein, T., S. Borchert, P. Kiesau, S. Heinzmann, S. Kloss, C. Klein, M. Helfrich, and K. D. Entian. 2002. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol. Microbiol. 44: 403-416.   DOI   ScienceOn
16 Stein, T., S. Heinzmann, S. Dusterhus, S. Borchert, and K. D. Entian. 2005. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187: 822-828.   DOI   ScienceOn
17 Nakano, M. M., G. Zheng, and P. Zuber. 2000. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182: 3274-3277.   DOI   ScienceOn
18 Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128.   DOI   ScienceOn
19 Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77.   DOI   ScienceOn
20 Oscariz, J. C., L. Cintas, H. Holo, I. Lasa, I. F. Nes, and A. G. Pisabarro. 2006. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254: 108-115.   DOI   ScienceOn
21 Oscariz, J. C., I. Lasa, and A. G. Pisabarro. 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178: 337-341.   DOI
22 Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298.   DOI   ScienceOn
23 Papagianni, M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499.   DOI
24 Parisot, J., S. Carey, E. Breukink, W. C. Chan, A. Narbad, and B. Bonev. 2008. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob. Agents Chemother. 52: 612-618.   DOI   ScienceOn
25 Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79: 3-16.   DOI   ScienceOn
26 Sebei, S., T. Zendo, A. Boudabous, J. Nakayama, and K. Sonomoto. 2007. Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J. Appl. Microbiol. 103: 1621-1631.   DOI   ScienceOn
27 Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol. 66: 5213-5220.   DOI   ScienceOn
28 Lee, H., J. J. Churey, and R. W. Worobo. 2008. Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J. Appl. Microbiol. 105: 663-673.   DOI   ScienceOn
29 Lee, H., J. J. Churey, and R. W. Worobo. 2009. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299: 205-213.   DOI   ScienceOn
30 Lee, H., J. J. Churey, and R. W. Worobo. 2009. Isolation and characterization of a protective bacterial culture isolated from honey active against American Foulbrood disease. FEMS Microbiol. Lett. 296: 39-44.   DOI   ScienceOn
31 Lee, J. H., T. W. Kim, H. Lee, H. Chang, and H. Y. Kim. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394.   DOI   ScienceOn
32 Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11: 23-27.   DOI   ScienceOn
33 Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: Biological and physicochemical properties. Toxicology 87: 151-174.   DOI   ScienceOn
34 Martin, N. I., H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, and J. C. Vederas. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132.   DOI
35 McAuliffe, O., R. P. Ross, and C. Hill. 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285-308.   DOI   ScienceOn
36 Moyne, A. L., R. Shelby, T. E. Cleveland, and S. Tuzun. 2001. Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 90: 622-629.   DOI   ScienceOn
37 Naclerio, G., E. Ricca, M. Sacco, and M. De Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4316.
38 Kim, T. W., Y. H. Kim, S. E. Kim, J. H. Lee, C. S. Park, and H. Y. Kim. 2010. Identification and distribution of Bacillus species in doenjang by whole-cell protein patterns and 16S rRNA gene sequence analysis. J. Microbiol. Biotechnol. 20: 1210-1214.   DOI
39 Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR - denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271.   DOI   ScienceOn
40 Kim, T. W., J. H. Lee, M. H. Park, and H. Y. Kim. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE. Curr. Microbiol. 60: 315-320.
41 Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85.
42 Kleerebezem, M., R. Bongers, G. Rutten, W. M. de Vos, and O. P. Kuipers. 2004. Autoregulation of subtilin biosynthesis in Bacillus subtilis: The role of the spa-box in subtilin-responsive promoters. Peptides 25: 1415-1424.   DOI   ScienceOn
43 Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in Gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596.   DOI   ScienceOn
44 Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and twocomponent signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895-904.   DOI   ScienceOn
45 Klein, C. and K. D. Entian. 1994. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol. 60: 2793-2801.
46 Klein, C., C. Kaletta, N. Schnell, and K. D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
47 Corvey, C., T. Stein, S. Dusterhus, M. Karas, and K. D. Entian. 2003. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun. 304: 48-54.   DOI   ScienceOn
48 Delves-Broughton, J. 2005. Nisin as a food preservative. Food Aust. 57: 525-527.
49 Duquesne, S., D. Destoumieux-Garzon, J. Peduzzi, and S. Rebuffat. 2007. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24: 708-734.   DOI   ScienceOn
50 Duquesne, S., V. Petit, J. Peduzzi, and S. Rebuffat. 2007. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol Biotechnol 13: 200-209.   DOI   ScienceOn
51 Entian, K.-D. and W. M. de Vos. 1996. Genetics of subtilin and nisin biosyntheses. Antonie Van Leeuwenhoek 69: 109-117.   DOI   ScienceOn
52 Garcia-Olmedo, F., A. Molina, J. M. Alamillo, and P. Rodriguez-Palenzuela. 1998. Plant defense peptides. Biopolymers 47: 479-491.   DOI   ScienceOn
53 Gillor, O., L. M. Nigro, and M. A. Riley. 2005. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr. Pharm. Des. 11: 1067-1075.   DOI   ScienceOn
54 Guder, A., I. Wiedemann, and H. G. Sahl. 2000. Posttranslationally modified bacteriocins - the lantibiotics. Biopolymers 55: 62-73.   DOI   ScienceOn
55 Gutowski-Eckel, Z., C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K. D. Entian. 1994. Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 60: 1-11.
56 Hechard, Y. and H. G. Sahl. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545-557.   DOI   ScienceOn
57 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
58 Abee, T. 1995. Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129: 1-10.   DOI
59 Ahern, M., S. Verschueren, and D. van Sinderen. 2003. Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220: 127-131.   DOI   ScienceOn
60 Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. (Tokyo) 98: 585-603.   DOI
61 Banerjee, S. and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508-9514.
62 Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361-2364.   DOI   ScienceOn
63 Chehimi, S., F. Delalande, S. Sable, M. R. Hajlaoui, A. Van Dorsselaer, F. Limam, and A. M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290.   DOI   ScienceOn
64 Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000.   DOI   ScienceOn
65 Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, S. Jaoua, and A. Boudabous. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247.   DOI   ScienceOn
66 Chung, Y. J. and J. N. Hansen. 1992. Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J. Bacteriol. 174: 6699-6702.   DOI