DOI QR코드

DOI QR Code

Recent Insights in the Removal of Klebseilla Pathogenicity Factors for the Industrial Production of 2,3-Butanediol

  • Shrivastav, Anupama (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Kim, Young-Rok (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
  • Received : 2013.02.27
  • Accepted : 2013.03.18
  • Published : 2013.07.28

Abstract

2,3-Butanediol (2,3-BDO) has immense industrial applications. Recently, microbial fermentation has emerged as an alternative way to produce this industrially important chemical. Although 2,3-BDO is produced by several microorganisms, the Klebsiella genera has an excellent production compared with other 2,3-BDO-producing microorganisms. In order to produce 2,3-BDO on a large scale, the challenges of removing pathogenic factors from Klebsiella pneumoniae need to be addressed. K. pneumoniae produces a number of virulence factors that contribute to its pathogenesis, including lipopolysaccharides, capsules, fimbrial adhesins, etc. Removal of these pathogenic factors from 2,3-BDO-producing Klebsiella strains will result in avirulent strains for the safe, economic, and efficient production of 2,3-BDO. In this review, we summarize the current trends in 2,3-BDO production using K. pneumoniae and insights into the removal of its virulence factors for industrial applications.

Keywords

References

  1. Afschar AS, Bellgardt KH, Rossell CEV, Czok A, Schaller K. 1991. The production of 2,3-butanediol by fermentation of high test molasses. Appl. Microbiol. Biotechnol. 34: 582-585. https://doi.org/10.1007/BF00167903
  2. Alam S, Capit F, Weigand WA, Hong J. 1990. Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: Effect of initial substrate concentration and aeration. J. Chem. Technol. Biotechnol. 47 :71-84.
  3. Biebl H, Zeng AP, Menzel K, Deckwer WD. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 50: 24-29. https://doi.org/10.1007/s002530051251
  4. Byun TG, Zeng AP, Deckwer WD. 1994. Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen-transfer rate. Bioproc. Eng. 11: 167-175. https://doi.org/10.1007/BF00518739
  5. Cao NJ, Xia YK, Gong CS, Tsao GT. 1997. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. Appl. Biochem. Biotechnol. 63-65: 129-139. https://doi.org/10.1007/BF02920419
  6. Celinska E, Grajek W. 2009. Biotechnological production of 2,3-butanediol - current state and prospects. Biotechnol. Adv. 27: 715-725. https://doi.org/10.1016/j.biotechadv.2009.05.002
  7. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, et al. 1999. X-Ray structure of the fimC-fimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061-1066. https://doi.org/10.1126/science.285.5430.1061
  8. Domenico P, Schwartz S, Cunha BA. 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect. Immun. 57: 3778-3782.
  9. Domenico P, Salo RJ, Cross AS, Cunha BA. 1994. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect. Immun. 62: 4495-4499.
  10. Fresno S, Jimenez N, Canals R, Merino S, Corsaro MM, Lanzetta R, et al. 2006. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebseilla pneumoniae. J. Bacteriol. 189: 1128-1137.
  11. Gao J, Xu H, Li QJ, Feng XH, Li S. 2010. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour. Technol. 101: 7087-7093.
  12. Garg SK, Jain A. 1995. Fermentative production of 2,3-butanediol - a review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
  13. Gerlach GF, Clegg S, Allen BL. 1989. Identification and characterization of the genes encoding the type-3 and type-1 fimbrial adhesins of Klebsiella pneumoniae. J. Bacteriol. 171: 1262-1270.
  14. Ghosh S, Swaminathan T. 2003. Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chem. Biochem. Eng. Q. 17: 319-325.
  15. Groleau D, Laube VM, Martin SM. 1985. The effect of various atmospheric conditions on the 2,3-butanediol fermentation from glucose by Bacillus polymyxa. Biotechnol. Lett. 7: 53-58. https://doi.org/10.1007/BF01032420
  16. Jansen NB, Flickinger MC, Tsao GT, 1984. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol. Bioeng. 26: 362-369. https://doi.org/10.1002/bit.260260411
  17. Ji XJ, H uang H , Du J , Zhu JG, Ren L J, L i S , et al. 2009. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 100: 5214-5218. https://doi.org/10.1016/j.biortech.2009.05.036
  18. Ji XJ, Huang H, Li S, Du J, Lian M. 2008. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol. Lett. 30: 731-734. https://doi.org/10.1007/s10529-007-9599-8
  19. Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, et al. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758. https://doi.org/10.1007/s00253-009-2222-2
  20. Ji XJ, Huang H, Ouyang PK. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
  21. Johnson GJ, Murphy CN, Sippy J, Johnson JT, Clegg S. 2011. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J. Bacteriol. 193: 3453-3460. https://doi.org/10.1128/JB.00286-11
  22. Jung MY, Ng CY, Song H, L ee J , Oh MK. 2012. Deleti on of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl. Microbiol. Biotechnol. 95: 461-465. https://doi.org/10.1007/s00253-012-3883-9
  23. Jung SG, Jang JH, Kim AY, Lim MC, Kim BR, Lee JW, et al. 2012. Removal of pathogenic factors from 2,3-butanediolproducing Klebsiella species by inactivating virulence related wabG gene. Appl. Microbiol. Biotechnol. 97: 1997-2007.
  24. Keynan Y, Rubinstein E. 2007. The changing face of Klebsiella pneumoniae infections in the community. Int. J. Antimicrob. Agents 30: 385-389. https://doi.org/10.1016/j.ijantimicag.2007.06.019
  25. Ki m B, L ee S, P ark J, L u M, O h M, K im Y, et al. 2012. Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258-1263. https://doi.org/10.4014/jmb.1201.01044
  26. Klemm P. 1986. Regulatory fim genes, fimB and fimE, control the phase variation of type-1 fimbriae in Escherichia-coli. EMBO J. 5: 1389-1393.
  27. Langstraat J, Bohse M, Clegg S. 2001. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesion (MrkD), facilitates biofilm formation. Infect. Immun. 69: 5805-5812. https://doi.org/10.1128/IAI.69.9.5805-5812.2001
  28. Li D, Dai JY, Xiu ZL. 2010. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour. Technol. 101: 8342-8347. https://doi.org/10.1016/j.biortech.2010.06.041
  29. Lin TL, Yang FL, Yang AA, Peng HP, Li TL, Tsai MD, et al. 2012. Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide. PLoS ONE. 7: e46783. https://doi.org/10.1371/journal.pone.0046783
  30. Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49-57. https://doi.org/10.1007/s00253-008-1732-7
  31. Magee RJ, Kosaric N. 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 32: 89-161. https://doi.org/10.1016/S0065-2164(08)70079-0
  32. Menzel K, Zeng AP, Deckwer WD. 1997. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20: 82-86. https://doi.org/10.1016/S0141-0229(96)00087-7
  33. Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR. 1985. A microbial culture with oxygen sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol. Bioeng. 27: 482-489. https://doi.org/10.1002/bit.260270413
  34. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. 1998. I nducti on a nd e vasion o f host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494-1497. https://doi.org/10.1126/science.282.5393.1494
  35. Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N. 2000. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J. Biosci. Bioeng. 90: 661-664.
  36. Nilegaonkar SS, Bhosale SB, Kshirsagar DC, Kapadi AH. 1992. Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J. Microbiol. Biotechnol. 8: 378-381. https://doi.org/10.1007/BF01198748
  37. Pan PC, Chen HW, Wu PK, Wu YY, L i n CH, Wu JH. 2011. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice. Exp. Biol. Med. 236: 219-226. https://doi.org/10.1258/ebm.2010.010193
  38. Petrov K, Petrova P. 2010. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl. Microbiol. Biotechnol. 87: 943-949. https://doi.org/10.1007/s00253-010-2545-z
  39. Podschun R, Penner I, Ullmann U. 1992. Interaction of Klebsiella capsule type-7 with human polymorphonuclear leukocytes. Microb. Pathog. 13: 371-379. https://doi.org/10.1016/0882-4010(92)90080-8
  40. Perego P, Converti A, Del Borghi A, Canepa P. 2000. 2,3-Butanediol production by Enterobacter aerogenes: Selection of the optimal conditions and application to food industry residues. Bioprocess Biosyst. Eng. 23: 613-620. https://doi.org/10.1007/s004490000210
  41. Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
  42. Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese J. Chem. Eng. 14: 132-136. https://doi.org/10.1016/S1004-9541(06)60050-5
  43. Qureshi N, Cheryan M. 1989. Effect of lactic-acid on growth and butanediol production by Klebsiella oxytoca. J. Ind. Microbiol. 4: 453-456. https://doi.org/10.1007/BF01569642
  44. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  45. Regue M, Hita B, Pique N, Izquierdo L, Fresno SM, Benedi VJ, et al. 2004. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect. Immun. 72: 54-61. https://doi.org/10.1128/IAI.72.1.54-61.2004
  46. Sabra W, Quitmann H, Zeng AP, Dai JY, Xiu ZL. 2011. Microbial production of 2,3-butanediol, pp. 87-98. In Young MM (ed.). Comprehensive Biotechnology, 2nd Ed. E lsevier, Amsterdam, The Netherlands.
  47. Schembri MA, Blom J, Krogfelt KA, Klemm P, 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73: 4626-4633. https://doi.org/10.1128/IAI.73.8.4626-4633.2005
  48. Schroll C, Barken KB. Krogfelt KA, Struve C. 2010. Role of type 1 and type 3 fi mbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10: 179-189. https://doi.org/10.1186/1471-2180-10-179
  49. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, et al. 2012. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J. Bacteriol. 194: 2371-2372. https://doi.org/10.1128/JB.00026-12
  50. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, et al. 2012. Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J. Bacteriol. 194: 2736-2737. https://doi.org/10.1128/JB.00027-12
  51. Simoonssmit AM, Verweijvanvught A, Maclaren DM. 1986. The role of k-antigens as virulence factors in Klebsiella. J. Med. Microbiol. 21: 133-137. https://doi.org/10.1099/00222615-21-2-133
  52. Struve C, Krogfelt KA. 2003. Role of capsule in Klebsiella pneumoniae virulence: Lack of correlation between in vitro and in vivo studies. FEMS Microbiol. Lett. 218: 149-154. https://doi.org/10.1111/j.1574-6968.2003.tb11511.x
  53. Suescun AV, Cubillos JR, Zambrano MM. 2006. Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae. Biomedica 26: 528-537.
  54. Sun LH, Wang XD, Dai JY, Xiu ZL. 2009. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847-852. https://doi.org/10.1007/s00253-008-1823-5
  55. Syu MJ. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18. https://doi.org/10.1007/s002530000486
  56. Tarkkanen AM, Allen BL, Westerlund B, Holthofer H, Kuusela P, Risteli L, et al. 1990. Type-V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol. Microbiol. 4: 1353-1361. https://doi.org/10.1111/j.1365-2958.1990.tb00714.x
  57. Van Haveren J, Scott EL, Sanders J. 2008. Bulk chemicals from biomass. Biofuels Bioprod. Biorefinding 2: 41-57. https://doi.org/10.1002/bbb.43
  58. Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P. 2010. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl. Microbiol. Biotechnol. 87: 965-970. https://doi.org/10.1007/s00253-010-2557-8
  59. Willetts A. 1984. Butane 2,3-diol production by Aeromonas hydrophila grown on starch. Biotechnol. Lett. 6: 263-268. https://doi.org/10.1007/BF00140048
  60. Williams P, Lambert PA, Brown MRW, Jones RJ. 1983. The role of the O-antigen and K-antigen in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J. Gen. Microbiol. 129: 2181-2191.
  61. Wong CL, Huang CC, Lu WB, Chen WM, Chang JS. 2012. Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochem. Eng. J. 69: 32-40. https://doi.org/10.1016/j.bej.2012.08.006
  62. Xiu ZL, Zeng AP. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
  63. Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658. https://doi.org/10.1002/jobm.201100033
  64. Yu EKC, Saddler JN. 1982. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic-acid. Appl. Environ. Microbiol. 44: 777-784.
  65. Zeng AP, Byun TG, Posten C, Deckwer WD. 1994. Use of respiratory quotient as a control parameter for optimum oxygen-supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol. Bioeng. 44: 1107-1114. https://doi.org/10.1002/bit.260440912
  66. Zeng AP, Sabra W. 2011. Microbial production of diols as platform chemicals: Recent progresses. Curr. Opin. Biotechnol. 22: 749-757. https://doi.org/10.1016/j.copbio.2011.05.005
  67. Zhang LY, Sun JA, H ao YL, Zhu JW, Chu J , Wei DZ, et al. 2010. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 37: 857-862. https://doi.org/10.1007/s10295-010-0733-6
  68. Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH. 2008. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. 100: 923-932. https://doi.org/10.1002/bit.21830

Cited by

  1. Development of a multiplex PCR assay for identification of Klebsiella pneumoniae hypervirulent clones of capsular serotype K2 vol.63, pp.12, 2014, https://doi.org/10.1099/jmm.0.081448-0
  2. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059 vol.42, pp.12, 2013, https://doi.org/10.1007/s10295-015-1697-3
  3. Strategies for efficient and economical 2,3-butanediol production: new trends in this field vol.32, pp.12, 2013, https://doi.org/10.1007/s11274-016-2161-x
  4. Direct C-C coupling of bio-ethanol into 2,3-butanediol by photochemical and photocatalytic oxidation with hydrogen peroxide vol.18, pp.22, 2013, https://doi.org/10.1039/c6gc00883f
  5. Direct C-C coupling of bio-ethanol into 2,3-butanediol by photochemical and photocatalytic oxidation with hydrogen peroxide vol.18, pp.22, 2013, https://doi.org/10.1039/c6gc00883f
  6. One‐Step Production of 1,3‐Butadiene from 2,3‐Butanediol Dehydration vol.22, pp.35, 2013, https://doi.org/10.1002/chem.201602390
  7. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects vol.37, pp.8, 2017, https://doi.org/10.1080/07388551.2017.1299680
  8. Improved Raoultella planticola Strains for the Production of 2,3-Butanediol from Glycerol vol.5, pp.1, 2013, https://doi.org/10.3390/fermentation5010011
  9. A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1 vol.103, pp.8, 2013, https://doi.org/10.1007/s00253-019-09724-z
  10. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1545-1
  11. Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products vol.12, pp.3, 2013, https://doi.org/10.3390/polym12030532
  12. Current advances in microbial production of 1,3‐propanediol vol.15, pp.5, 2021, https://doi.org/10.1002/bbb.2254