Browse > Article
http://dx.doi.org/10.4014/jmb.1302.02066

Recent Insights in the Removal of Klebseilla Pathogenicity Factors for the Industrial Production of 2,3-Butanediol  

Shrivastav, Anupama (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Hae-Yeong (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
Kim, Young-Rok (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 885-896 More about this Journal
Abstract
2,3-Butanediol (2,3-BDO) has immense industrial applications. Recently, microbial fermentation has emerged as an alternative way to produce this industrially important chemical. Although 2,3-BDO is produced by several microorganisms, the Klebsiella genera has an excellent production compared with other 2,3-BDO-producing microorganisms. In order to produce 2,3-BDO on a large scale, the challenges of removing pathogenic factors from Klebsiella pneumoniae need to be addressed. K. pneumoniae produces a number of virulence factors that contribute to its pathogenesis, including lipopolysaccharides, capsules, fimbrial adhesins, etc. Removal of these pathogenic factors from 2,3-BDO-producing Klebsiella strains will result in avirulent strains for the safe, economic, and efficient production of 2,3-BDO. In this review, we summarize the current trends in 2,3-BDO production using K. pneumoniae and insights into the removal of its virulence factors for industrial applications.
Keywords
2,3-Butanediol; K. pneumoniae; capsule; fimbriae; lipopolysaccharide; pathogenic factors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Byun TG, Zeng AP, Deckwer WD. 1994. Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen-transfer rate. Bioproc. Eng. 11: 167-175.   DOI
2 Afschar AS, Bellgardt KH, Rossell CEV, Czok A, Schaller K. 1991. The production of 2,3-butanediol by fermentation of high test molasses. Appl. Microbiol. Biotechnol. 34: 582-585.   DOI
3 Alam S, Capit F, Weigand WA, Hong J. 1990. Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: Effect of initial substrate concentration and aeration. J. Chem. Technol. Biotechnol. 47 :71-84.
4 Biebl H, Zeng AP, Menzel K, Deckwer WD. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 50: 24-29.   DOI   ScienceOn
5 Cao NJ, Xia YK, Gong CS, Tsao GT. 1997. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. Appl. Biochem. Biotechnol. 63-65: 129-139.   DOI   ScienceOn
6 Celinska E, Grajek W. 2009. Biotechnological production of 2,3-butanediol - current state and prospects. Biotechnol. Adv. 27: 715-725.   DOI   ScienceOn
7 Fresno S, Jimenez N, Canals R, Merino S, Corsaro MM, Lanzetta R, et al. 2006. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebseilla pneumoniae. J. Bacteriol. 189: 1128-1137.
8 Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, et al. 1999. X-Ray structure of the fimC-fimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061-1066.   DOI   ScienceOn
9 Domenico P, Schwartz S, Cunha BA. 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect. Immun. 57: 3778-3782.
10 Domenico P, Salo RJ, Cross AS, Cunha BA. 1994. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect. Immun. 62: 4495-4499.
11 Gao J, Xu H, Li QJ, Feng XH, Li S. 2010. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour. Technol. 101: 7087-7093.
12 Garg SK, Jain A. 1995. Fermentative production of 2,3-butanediol - a review. Bioresour. Technol. 51: 103-109.   DOI   ScienceOn
13 Gerlach GF, Clegg S, Allen BL. 1989. Identification and characterization of the genes encoding the type-3 and type-1 fimbrial adhesins of Klebsiella pneumoniae. J. Bacteriol. 171: 1262-1270.
14 Ghosh S, Swaminathan T. 2003. Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chem. Biochem. Eng. Q. 17: 319-325.
15 Groleau D, Laube VM, Martin SM. 1985. The effect of various atmospheric conditions on the 2,3-butanediol fermentation from glucose by Bacillus polymyxa. Biotechnol. Lett. 7: 53-58.   DOI
16 Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, et al. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758.   DOI   ScienceOn
17 Jansen NB, Flickinger MC, Tsao GT, 1984. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol. Bioeng. 26: 362-369.   DOI   ScienceOn
18 Ji XJ, Huang H, Ouyang PK. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351-364.   DOI   ScienceOn
19 Ji XJ, H uang H , Du J , Zhu JG, Ren L J, L i S , et al. 2009. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 100: 5214-5218.   DOI   ScienceOn
20 Ji XJ, Huang H, Li S, Du J, Lian M. 2008. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol. Lett. 30: 731-734.   DOI   ScienceOn
21 Johnson GJ, Murphy CN, Sippy J, Johnson JT, Clegg S. 2011. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J. Bacteriol. 193: 3453-3460.   DOI   ScienceOn
22 Jung MY, Ng CY, Song H, L ee J , Oh MK. 2012. Deleti on of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl. Microbiol. Biotechnol. 95: 461-465.   DOI   ScienceOn
23 Jung SG, Jang JH, Kim AY, Lim MC, Kim BR, Lee JW, et al. 2012. Removal of pathogenic factors from 2,3-butanediolproducing Klebsiella species by inactivating virulence related wabG gene. Appl. Microbiol. Biotechnol. 97: 1997-2007.
24 Langstraat J, Bohse M, Clegg S. 2001. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesion (MrkD), facilitates biofilm formation. Infect. Immun. 69: 5805-5812.   DOI
25 Keynan Y, Rubinstein E. 2007. The changing face of Klebsiella pneumoniae infections in the community. Int. J. Antimicrob. Agents 30: 385-389.   DOI   ScienceOn
26 Ki m B, L ee S, P ark J, L u M, O h M, K im Y, et al. 2012. Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258-1263.   DOI   ScienceOn
27 Klemm P. 1986. Regulatory fim genes, fimB and fimE, control the phase variation of type-1 fimbriae in Escherichia-coli. EMBO J. 5: 1389-1393.
28 Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49-57.   DOI   ScienceOn
29 Li D, Dai JY, Xiu ZL. 2010. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour. Technol. 101: 8342-8347.   DOI   ScienceOn
30 Lin TL, Yang FL, Yang AA, Peng HP, Li TL, Tsai MD, et al. 2012. Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide. PLoS ONE. 7: e46783.   DOI
31 Magee RJ, Kosaric N. 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 32: 89-161.   DOI
32 Menzel K, Zeng AP, Deckwer WD. 1997. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20: 82-86.   DOI   ScienceOn
33 Nilegaonkar SS, Bhosale SB, Kshirsagar DC, Kapadi AH. 1992. Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J. Microbiol. Biotechnol. 8: 378-381.   DOI   ScienceOn
34 Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR. 1985. A microbial culture with oxygen sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol. Bioeng. 27: 482-489.   DOI   ScienceOn
35 Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al. 1998. I nducti on a nd e vasion o f host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494-1497.   DOI
36 Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N. 2000. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J. Biosci. Bioeng. 90: 661-664.
37 Pan PC, Chen HW, Wu PK, Wu YY, L i n CH, Wu JH. 2011. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice. Exp. Biol. Med. 236: 219-226.   DOI   ScienceOn
38 Perego P, Converti A, Del Borghi A, Canepa P. 2000. 2,3-Butanediol production by Enterobacter aerogenes: Selection of the optimal conditions and application to food industry residues. Bioprocess Biosyst. Eng. 23: 613-620.   DOI
39 Petrov K, Petrova P. 2010. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl. Microbiol. Biotechnol. 87: 943-949.   DOI
40 Podschun R, Penner I, Ullmann U. 1992. Interaction of Klebsiella capsule type-7 with human polymorphonuclear leukocytes. Microb. Pathog. 13: 371-379.   DOI   ScienceOn
41 Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
42 Regue M, Hita B, Pique N, Izquierdo L, Fresno SM, Benedi VJ, et al. 2004. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect. Immun. 72: 54-61.   DOI
43 Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese J. Chem. Eng. 14: 132-136.   DOI   ScienceOn
44 Qureshi N, Cheryan M. 1989. Effect of lactic-acid on growth and butanediol production by Klebsiella oxytoca. J. Ind. Microbiol. 4: 453-456.   DOI
45 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489.   DOI   ScienceOn
46 Sabra W, Quitmann H, Zeng AP, Dai JY, Xiu ZL. 2011. Microbial production of 2,3-butanediol, pp. 87-98. In Young MM (ed.). Comprehensive Biotechnology, 2nd Ed. E lsevier, Amsterdam, The Netherlands.
47 Schembri MA, Blom J, Krogfelt KA, Klemm P, 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73: 4626-4633.   DOI   ScienceOn
48 Schroll C, Barken KB. Krogfelt KA, Struve C. 2010. Role of type 1 and type 3 fi mbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10: 179-189.   DOI   ScienceOn
49 Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, et al. 2012. Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J. Bacteriol. 194: 2736-2737.   DOI   ScienceOn
50 Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, et al. 2012. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J. Bacteriol. 194: 2371-2372.   DOI   ScienceOn
51 Sun LH, Wang XD, Dai JY, Xiu ZL. 2009. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 82: 847-852.   DOI
52 Simoonssmit AM, Verweijvanvught A, Maclaren DM. 1986. The role of k-antigens as virulence factors in Klebsiella. J. Med. Microbiol. 21: 133-137.   DOI
53 Struve C, Krogfelt KA. 2003. Role of capsule in Klebsiella pneumoniae virulence: Lack of correlation between in vitro and in vivo studies. FEMS Microbiol. Lett. 218: 149-154.   DOI
54 Suescun AV, Cubillos JR, Zambrano MM. 2006. Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae. Biomedica 26: 528-537.
55 Syu MJ. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18.   DOI   ScienceOn
56 Tarkkanen AM, Allen BL, Westerlund B, Holthofer H, Kuusela P, Risteli L, et al. 1990. Type-V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol. Microbiol. 4: 1353-1361.   DOI
57 Van Haveren J, Scott EL, Sanders J. 2008. Bulk chemicals from biomass. Biofuels Bioprod. Biorefinding 2: 41-57.   DOI
58 Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P. 2010. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl. Microbiol. Biotechnol. 87: 965-970.   DOI
59 Willetts A. 1984. Butane 2,3-diol production by Aeromonas hydrophila grown on starch. Biotechnol. Lett. 6: 263-268.   DOI
60 Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658.   DOI   ScienceOn
61 Williams P, Lambert PA, Brown MRW, Jones RJ. 1983. The role of the O-antigen and K-antigen in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J. Gen. Microbiol. 129: 2181-2191.
62 Wong CL, Huang CC, Lu WB, Chen WM, Chang JS. 2012. Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochem. Eng. J. 69: 32-40.   DOI   ScienceOn
63 Xiu ZL, Zeng AP. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926.   DOI   ScienceOn
64 Yu EKC, Saddler JN. 1982. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic-acid. Appl. Environ. Microbiol. 44: 777-784.
65 Zeng AP, Byun TG, Posten C, Deckwer WD. 1994. Use of respiratory quotient as a control parameter for optimum oxygen-supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol. Bioeng. 44: 1107-1114.   DOI   ScienceOn
66 Zeng AP, Sabra W. 2011. Microbial production of diols as platform chemicals: Recent progresses. Curr. Opin. Biotechnol. 22: 749-757.   DOI   ScienceOn
67 Zhang LY, Sun JA, H ao YL, Zhu JW, Chu J , Wei DZ, et al. 2010. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 37: 857-862.   DOI   ScienceOn
68 Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH. 2008. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. 100: 923-932.   DOI   ScienceOn