• Title/Summary/Keyword: patch-clamp technique

Search Result 155, Processing Time 0.027 seconds

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement (임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩)

  • Kim, Dong-Il;Choi, Eun-Pyo;Chio, Sung-Sik;Park, Jung-Yul;Lee, Sang-Ho;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF

Decursin from Angelica gigas Nakai Blocks hKv1.5 Channel

  • Kwak, Yong-Geun;Choi, Bok-Hee;Kim, Dae-Keun;Eun, Jae-Soon
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • Decursin was purified from Angelica gigas Nakai, and its effects on the human Kv1.5 (hKv1.5) currents were recorded in mouse fibroblasts ($Ltk^-$ cells) by whole-cell patch-clamp technique. Decursin inhibited hKv1.5 current in a concentration-dependent manner, with an $IC_{50}$ value of $2.7\;{\mu}M$ at +60 mV. Decursin accelerated the inactivation kinetics of the hKv1.5 channel, and slowed the deactivation kinetics of the hKv1.5 current, resulting in a tail crossover phenomenon. Also, decursin inhibited the hKv1.5 current in a use-dependent manner. These results strongly suggest that decursin is a kind of open-channel blocker of the hKv1.5 channel.

GATING MECHANISM AND VOLTAGE-DEPENDENT BLOCK BY EXTERNAL DIVALENT CATIONS OF THE DELAYED RECTIFIER K CHANNEL IN RABBIT SINO-ATRIAL NODE CELLS

  • Ho, Won-Kyung;Lee, Suk-Ho;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.5-5
    • /
    • 1996
  • In sino-atrial node cells which act as the normal pacemaker of the heart, K conductance in resting state is minimal due to the absence of inward rectifier K channels K conductance only increases when the membrane is depolarized by the activation of the delayed rectifier K current I$\_$k/. In the present study, we investigated the gating mechanism of$\_$k/ using the whole cell patch clamp technique in isolated single sinoatrial cells of the rabbit. (omitted)

  • PDF

Purinoceptor and Intracellular $Ca^{2+}$ Regulation in Rat Prostate N euronencocrine Cells

  • Kim, Jun-Hee;Nam, Joo-Hyun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.45-45
    • /
    • 2002
  • Extracellular ATP regulates a wide range of cellular function including the growth of prostate gland. Purinoceptors (ATP receptors) are divided into P2X (ligand-gated ion channels) and P2Y (G-protein-coupled receptor) subfamilies. In the present study, we investigated the types of purinoceptors in rat prostate neuroendocrine (RPNE) cells using whole-cell patch clamp technique, intracellular $Ca^{2+}$ measurement and RT-PCR analysis.(omitted)d)

  • PDF

Actin Filaments Regulate the Stretch Sensitivity of Large Conductance $Ca^{2+}$-Activated $K^+$ Channel in Rabbit Coronary Arterial Smooth Muscle Cells

  • Lin Piao;Earm, Yung-E;Wonkyung Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.35-35
    • /
    • 2002
  • The large conductance $Ca^{2+}$ -activated $K^{+}$ channels ($BK_{Ca}$) in vascular smooth muscle have been considered to function as a negative feedback in pressure-induced vasoconstriction. In the present study, the function of cytoskeletons in the regulation of $BK_{Ca}$ and its stretch sensitivity was investigated. Using the inside-out patch clamp technique, we recorded single channel activities of $BK_{Ca}$ with 150 mM KCl in the bath solution (pCa=6.5).(omitted)itted)

  • PDF

Lithospermic acid modulate the Action potential duration by increasing Ica current in the rat ventricular myocyte

  • An, Seong-Hun;Kang, Dae-Gill;Lee, Ho-Sup;Lee, Suk-Ho;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.55-55
    • /
    • 2001
  • We observed the APD of rat ventricle myocyte and the effects of Lithospermic acid that was separated at Salvia miltiorrhiza having used in Oriental medicine by using classical whole cell patch clamp technique. We classified APD into APD30mV, APD0mV, APD-50mV, APD-60mV by cell membrane potential and the mean of cell resting membrane potential was -69.44${\pm}$1.72 mV.(omitted)

  • PDF

Inhibition of Acetylcholine-activated $K^+$ Current by Chelerythrine and Bisindolylmaleimide I in Atrial Myocytes from the Mice

  • Hana Cho;Youm, Jae-Boum;Earm, Yung-E;Ho, Won-Kyung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.54-54
    • /
    • 2001
  • The effects of protein kinase C inhibitors, chelerythrine and bisindolylmaleimide I, on acetylcholine activated $K^{+}$ currents ( $I_{KACh}$) were examined in atrial myocytes of mice using patch clamp technique. Chelerythrine and bisindolylmaleimide I inhibited $I_{KACh}$ in reversible and dose-dependent manners. Half maximal effective concentrations were 0.49 $\pm$ 0.01 $\mu$M for chelerythrine and 98.69 $\pm$ 12.68 nM for bisindolylmaleimide I.(omitted)

  • PDF

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

Role of Protein Kinase C on Norepinephrine Induced Inhibition of Calcium Current in Rat Sympathetic Neurons (흰쥐 교감신경세포에서 Norepinephrine 에 의한 칼슘전류 억제에 미치는 Protein Kinase C 의 역할)

  • ;Keith S. Elmslie
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2000
  • The signal transduction pathway for most neurotransmitter induced inhibition of $Ca^{2+}$ channels in sympathetic neurons involves a G-protein mediated, membrane-delimited mechanism without the participation of any known protein kinase. However, activation of protein kinase C (PKC) has been proposed as one of the intracellular mechanisms mediating some neurotransmitter induced $Ca^{2+}$ channel inhibition. In the present study, we investigated the effects of phorbol-12, 13-dibutyrate (PDBu) on $Ca^{2+}$ channel currents of acutely dispersed neurons from adult rat superior cervical ganglion (SCG) neurons using whole cell variant of the patch clamp technique. PDBu (500 nM), the activator of PKC, increased $Ca^{2+}$ channel currents and retarded the deactivation of tail currents. The effects of PDBu were voltage dependent and the maximal increase in the current amplitudes was observed between -10 to 10 mV (n=4). PDBu attenuated $Ca^{2+}$ current inhibition induced by norepinephrine (NE), which modulates $Ca^{2+}$ channels via a pertussis toxin (PTX)-sensitive pathway. Inhibition of PDBu by staurosporine (1 $\mu$M) blocked the effects of PDBu on current amplitudes and NE-induced G-protein mediated inhibition of $Ca^{2+}$ currents. Further experiment should be done to know if G-protein or $Ca^{2+}$ channel itself is the target of PKC phosphorvlation.phosphorvlation.

  • PDF