C13 ## Purinoceptor and Intracellular Ca²⁺ Regulation in Rat Prostate Neuronencocrine Cells Jun Hee Kim*, Joo Hyun Nam, Dae-Yong Uhm, Sung Joon Kim Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746 Extracellular ATP regulates a wide range of cellular function including the growth of prostate gland. Purinoceptors (ATP receptors) are divided into P2X (ligand-gated ion channels) and P2Y (G-protein-coupled receptor) subfamilies. In the present study, we investigated the types of purinoceptors in rat prostate neuroendocrine (RPNE) cells using whole-cell patch clamp technique, intracellular Ca2+ measurement and RT-PCR analysis. When membrane potential was held at -60 mV, ATP or α,β-meATP (1 μM) induced a transient inward current (I_{ATP}) with rapid desensitization. The current to voltage relation showed an inwardly rectifying property with nonselective permeability to cations. IATP was blocked by TNP-ATP, an antagonist of P2X1 and P2X3 receptors. A fast Ca2+ influx was observed along with the activation of I_{ATP}, indicating the Ca²⁺ permeability of P2X receptor channels. In external Ca²⁺ free condition, UTP or ATP, but not UDP, induced the release of Ca²⁺ from intracellular stores with similar potency. RT-PCR analysis confirmed the presence of transcripts for P2Y₂, P2X₁ and P2X₃ in the rat prostate tissue. Concomitant activation of P2X and P2Y receptors revealed the different time-courses in their effects on [Ca²⁺]_c; the fast rise of [Ca²⁺]_c by P2X-mediated Ca²⁺ influx prior to the later Ca²⁺ release through the IP₃-mediated signaling pathway. The time-difference in the increase of [Ca²⁺]_c may be directly coupled with the exocytotic release of hormones in RPNE cells.