• Title/Summary/Keyword: particulate morphology

Search Result 38, Processing Time 0.027 seconds

Biomimetic Apatite Precipitated on the Surface of Titanium Powder (티타늄분말의 표면에 석출된 생체모방 아파타이트)

  • Kim, Jong-Hee;Sim, Young-Uk;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

Thermal and Mechanical Properties of Waste Ground Nut-shell Reinforced Polyester Composites

  • Prabhakar, M.N.;Shah, Atta ur rehman;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.118-123
    • /
    • 2015
  • In the current study explain about the bio-based composites made by groundnut shell as reinforcement with polyester resin matrix. Groundnut shell is an abundantly available natural waste byproduct and poly ester resin is widely used to fabricate of composites for good balance of mechanical properties because it is relatively low price and ease of handling. Evaluate the mechanical properties of manufactured groundnut shell/polyester composites by varying the amounts (wt %) of groundnut shell. Particulate shell reinforced polyester composites incorporating varying amounts of groundnut shell (5, 10, 15 and 20%) were characterized for their tensile strength, flexural strength, and impact strength. The mechanical properties improved with increasing particle loading up to 15% and decreased thereafter. Increasing in strength with increased particle shell loading was attributed to increase in surface area which enhanced load transfer between the polyester matrix and ground shall particulates. Scanning electron microscopic studies have been carried out to study the morphology of the composite. Thermal studies and water absorption properties of the composites also studied in this paper.

Morphological Study on the Mast Cell of Proventriculus in Pheasant (Phasianus colchicus) (꿩 전위의 비만세포에 관한 형태학적 연구)

  • Lee Y. H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.97-100
    • /
    • 2005
  • Mast cells have been studied extensively in various animals including rats and mice, whereas little is known the morphological data about pheasant mast cells. Here, morphological features of Korean pheasant mast cells are described in this study using light and electron microscopes. For light microscopy, mast cells had many metachromatic granules stained with toluidine blue in the cytoplasm. The fixation with $10\%$ neutral buffered formalin blocked staining of most mast cells but a modified Karnovsky solution proved to be a good fixative. In Korean pheasants, toluidine blue stained more mast cells than did alcian blue. For electron microscopy, the mast cells of the Korean pheasant were round, oval, spindle-like and irregular form and occasionally had a few short cytoplasmic processes. These cells had membrane-bounded granules and poorly developed organells. Some granules in the cytoplasm of the mast cells had bilayer membrane. Most granules were round shape and the membrane of several granules was concave or convex. The granules were composed of three parts, homogenous, particulate and reticular pattern.

Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor (벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구)

  • Park, Soo-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Effects of Diesel Exhaust Particles on Human Aortic Vascular Smooth Muscle Cells (디젤분진이 사람 동맥 평활근 세포(VSMC)에 미치는 영향)

  • Lim Yong;Kim Soo-Yeon;Chung Kyu-Hyuck;Chung Jin-Ho;Moon Chang-Kiu;Yun Yeo-Pyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2004
  • The purpose of the present study was to examine the effect of diesel exhaust particles on human aortic vascular smooth muscle cells (VSMCs). DNA synthesis, cell viability and morphology of VSMCs after treatment of diesel exhaust particles (DEP) and fine particulate matter (PM$_{2.5}$) were assayed. PM$_{2.5}$ inhibited the DNA synthesis of VSMCs in a concentration -dependent manner, whereat DEP did not affect VSMCs up to 50$\mu\textrm{g}$/mL. These results were confirmed by morphological examination of VSMCs. PM$_{2.5}$ showed a dose-dependent cytotoxicity of VSMCs by MTT assay. Fraction 4 (organic acids) and fraction 8 (moderately polar compounds) showed the most potent inhibition of DNA synthesis of VSMCs, and fraction 7 (slightly polar compounds), fraction 9 (higher polar compounds), and fraction 6 (aromatic compounds) were next order. These results were confirmed by morphological examination of VSMCs. These results suggest that PM$_{2.5}$ inhibits the DNA synthesis of VSMCs through the cytotoxicity.oxicity.

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.

Diurnal and Nocturnal Behaviour of Airborne Cryptomeria japonica Pollen Grains and the Allergenic Species in Urban Atmosphere of Saitama, Japan

  • Wang, Qingyue;Nakamura, Shinichi;Lu, Senlin;Nakajima, Daisuke;Suzuki, Miho;Sekiguchi, Kazuhiko;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Japanese cedar (Cryptomeria japonica) pollinosis is the most popular pollinosis in Japan. It has been reported that Cryptomeria japonica pollen allergenic species are suspended as fine particles in the urban atmosphere. These allergenic fine particles are responsible for inducing asthma by breaking into the lower respiratory tract. It has also been found that pollinosis symptoms on the sufferers appear mainly at night-time by the results from epidemiological studies. However, the exact reason for these phenomena is not yet clarified. In this study, the diurnal and nocturnal behaviours of Cryptomeria japonica pollen grains and their allergenic species in the urban area of Saitama city of Kanto Plain were investigated. Airborne pollen grains and allergenic Cry j 1 concentrations in total suspended particulate matter (TSP) were investigated at two sampling sites, a heavy traffic road (roadside site) and at the balcony of the $10^{th}$ floor of the Building of Research and Project of Saitama University (general urban site). The latter sampling site where located about 300 m away from the roadside site was used as a general urban site unaffected by automobile traffic. The airborne pollen counts were measured with a real-time pollen monitor. Cry j 1 particles were collected with two high volume air samplers, and these concentrations were measured by surface plasmon resonance method with a Biacore J system. The diurnal variation of the airborne pollen counts was similar to the trends of temperature and wind speed during the day-time; whereas its tendency with wind speed trend was not observed during the night-time. Airborne pollen counts were lower with northern wind than with southern wind because the pollen comes from the mountainous areas, and the mountains in the south are closer, about half the distance to the northern mountains. It is suggested that the peaks of airborne pollen counts during night-time in the sampling site occurred by transport of pollen grains released during day-time in the mountainous forest areas, located c.a. 100 km away from the sampling site. On the roadside site the allergenic Cry j 1 concentrations were higher than at the general urban site, nevertheless pollen grains counts were lower. These results suggested that worsening of pollinosis symptoms during night-time in urban area was caused by transport of pollen grains during day-time in the mountainous forest areas. Moreover, pollen allergenic species become different morphology from pollen grain at roadside site, and the subsequent pollen grains re-suspension by automobile traffic.

Characteristics of Large-area PTFE Filter Coated with PTFE Nanofiber Fabricated by Roll-to-roll Equipment (Roll-to-roll 공정으로 제조한 나노섬유가 코팅된 대면적 PTFE 필터 특성)

  • Ahn, Seunghwan;Lee, Woo Jin;Kim, Yeonsang;Shim, Euijin;Eom, Hyeonjin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.613-617
    • /
    • 2022
  • The equipment for fabricating the large-area PTFE nanofiber coated-PTFE foam filter for use as filtration parts of the baghouse that removes particulate matter (PM) in industrial sites was designed and manufactured in this study. The PTFE nanofiber was coated on a commercial PTFE foam filter to increase its PM collection efficiency. The equipment and fabrication processes using a roll-to-roll system were proposed to continuously coat PTFE nanofibers on the surface of the PTFE foam filter. The electrospinning and annealing parts were designed and made by optimizing the equipment for the roll-to-roll system. The surface morphology, composition, and filtration characteristics of the large-area filter fabricated by this equipment were confirmed. PTFE nanofibers were uniformly coated on the large-area filter, and the PTFE nanofiber coated-PTFE foam filter showed PM2.5 collection efficiency of 91.79% and an appropriate pressure drop of 62 Pa with a face velocity of 1 m/min at 280 ℃.

A Potential Applicability of Microfluidic Techniques for Fabricating Advanced Cosmetic Materials (고급 화장품 소재 개발을 위한 마이크로플루딕스 기술의 잠재적 응용성)

  • Park, Sung-Hee;Kim, Han-Kon;Jeong, Kyu-Hyuck;Kim, Jin-Woong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.245-258
    • /
    • 2008
  • We describe here how we can use microfluidic technologies for fabricating functional materials that could be potentially utilized in cosmetics; these include void structures, functional particulate materials, shell materials, and multi-layered colloids. We can obtain these functional materials as microfluidic approaches provide precise control over both outer dimensions and inner morphology of emulsion drops in picoliter-volume scales with high throughput. We have confirmed that this technique has a great potential to fabricate novel particles and capsules with a variety of chemical compositions as well as higher orders of layers. This microfluidic approach will allow us to develop a lot of new techniques that are useful for a variety of applications, including delivery systems, chemical separations, bio-sensing, actuators, and so on. We do believe that these new techniques will help cosmetic industry not only give rise advanced functional materials and systems but also widen its product categories.