References
- T. Chovan and A. Guttman, Microfabricated devices in biotechnology and biochemical processing, Trends Biotechnol., 20, 116 (2002) https://doi.org/10.1016/S0167-7799(02)01905-4
- G. J. M. Bruin, Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis, 21, 3931 (2000) https://doi.org/10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO;2-M
- R. S. Kane, S. Takayama, P. Ostuni, D. E. Ingber, and G. M. Whitesides, Patterning proteins and cells using soft lithography, Biomaterials, 20, 2363 (1999) https://doi.org/10.1016/S0142-9612(99)00165-9
- W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008) https://doi.org/10.1016/j.cocis.2007.09.003
- H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in droplets in microflulidic channels, Angew. Chem. Int. Ed., 45, 7336 (2006) https://doi.org/10.1002/anie.200601554
- S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, Lab Chip, 8, 198 (2008) https://doi.org/10.1039/b715524g
- A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, Microdroplets: a sea of applications?, Lab Chip, 8, 1244 (2008) https://doi.org/10.1039/b806405a
- J. Atencia and D. J. Beebe, Controlled microfluidic interfaces, Nature, 437, 648 (2005) https://doi.org/10.1038/nature04163
- W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008) https://doi.org/10.1016/j.cocis.2007.09.003
- Y. C. Tan and A. P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab Chip, 5, 1178 (2005) https://doi.org/10.1039/b504497a
- B. R. Saunders and B. Vincent, Microgel particles as model colloids: theory, properties and applications, Adv. Colloid. Interf. Sci., 80, 1 (1999) https://doi.org/10.1016/S0001-8686(98)00071-2
- M. Das, H. Zhang, and E. Kumacheva, Microgels: old materials with new applications, Ann. Rev. Mater. Res., 36, 117 (2006) https://doi.org/10.1146/annurev.matsci.36.011205.123513
- N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers, J. Am. Chem. Soc., 124, 12398 (2002) https://doi.org/10.1021/ja026925r
- S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv. Drug Deliver. Rev., 54, 135 (2002) https://doi.org/10.1016/S0169-409X(01)00245-9
- V. C. Lopez, J. Hadgraft, and M. J. Snowden, The use of colloidal microgels as a (trans)dermal drug delivery system, Int. J. Pharm., 292, 137 (2005) https://doi.org/10.1016/j.ijpharm.2004.11.040
- L. Bromberg and V. Alakhov, Effects of polyethermodified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control. Release, 88, 11 (2003) https://doi.org/10.1016/S0168-3659(02)00419-4
- D. A. LaVan, D. M. Lynn, and R. Langer, Moving smaller in drug discovery and delivery, Nat. Rev. Drug Discov., 1, 77 (2002) https://doi.org/10.1038/nrd707
- S. Nayak, H. Lee, J. Chmielewski, and L. A. Lyon, Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels, J. Am. Chem. Soc., 126, 10258 (2004) https://doi.org/10.1021/ja0474143
- Y. Lu, Y. Mei, M. Ballauff, and M. Drechsler, Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, J. Phys. Chem. B, 110, 3930 (2006) https://doi.org/10.1021/jp057149n
- D. E. Bergbreiter, B. L. Case, Y. S. Liu, and J. W. Caraway, Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis, Macromolecules, 31, 6053 (1998) https://doi.org/10.1021/ma980836a
- A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, and H. J. Adler, Hybrid microgels with ZnS inclusions, Macromolecules, 38, 6610 (2005) https://doi.org/10.1021/ma0505272
- C. W. Chen, M. Q. Chen, T. Serizawa, and M. Akashi, In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface- grafted poly(N-isopropylacrylamide), Chem. Commun., 7, 831 (1998)
- K. Iwai, Y. Matsumura, S. Uchiyama, and A. P. de Silva, Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range, J. Mater. Chem., 15, 2796 (2005) https://doi.org/10.1039/b502277k
- G. E. Morris, B. Vincent, and M. J. Snowden, Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198 (1997) https://doi.org/10.1006/jcis.1997.4843
- G. Zenkl, T. Mayr, and I. Khmant, Sugar-responsive fluorescent nanospheres, Macromol. Biosci., 8, 146 (2008) https://doi.org/10.1002/mabi.200700174
- T. Hoare and R. Pelton, Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels, Macromolecules, 40, 670 (2007) https://doi.org/10.1021/ma062254w
- V. Lapeyre, I. Gosse, S. Chevreux, and V. Ravaine, Monodispersed glucose-responsive microgels operating at physiological salinity, Biomacromolecules, 7, 3356 (2006) https://doi.org/10.1021/bm060588n
- A. Jeenanong and H. Kawaguchi, SPR response of stimuli-sensitive microgel on sensor chip, Colloid Surface A, 302, 403 (2007) https://doi.org/10.1016/j.colsurfa.2007.03.008
- L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, Microgel colloidal crystals, J. Phys. Chem. B, 108, 19099 (2004) https://doi.org/10.1021/jp048486j
- D. Suzuki, J. G. McGrath, H. Kawaguchi, and L. A. Lyon, Colloidal crystals of thermosensitive, core/shell hybrid microgels, J. Phys. Chem. C, 111, 5667 (2007) https://doi.org/10.1021/jp068535n
- S. Q. Xu, J. G. Zhang, C. Paquet, Y. K. Lin, and E. Kumacheva, From hybrid microgels to photonic crystals, Adv. Funct. Mater., 13, 468 (2003) https://doi.org/10.1002/adfm.200304338
- F. Ilmain, T. Tanaka, and E. Kokufuta, Volume transition in a gel driven by hydrogen-bonding, Nature, 349, 400 (1991) https://doi.org/10.1038/349400a0
- R. Pelton, Temperature-sensitive aqueous microgels, Adv. Colloid. Interfac., 85, 1 (2000) https://doi.org/10.1016/S0001-8686(99)00023-8
- C. D. Jones and L. A. Lyon, Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels, Macromolecules, 36, 1988 (2003) https://doi.org/10.1021/ma021079q
- D. J. Gan and L. A. Lyon, Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels, Macromolecules, 35, 9634 (2002) https://doi.org/10.1021/ma021186k
- D. J. Gan and L. A. Lyon, Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 8203 (2001) https://doi.org/10.1021/ja015974l
- D. J. Gan and L. A. Lyon, Tunable swelling kinetics in core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 7511 (2001) https://doi.org/10.1021/ja010609f
- B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Biodegradable block copolymers as injectable drugdelivery systems, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
- H. Matsuoka, K. Fujimoto, and H. Kawaguchi, Stimuli-response of microsphere having poly(Nisopropylacrylamide) shell, Polym. J., 31, 1139 (1999) https://doi.org/10.1295/polymj.31.1139
- P. W. Zhu and D. H. Napper, Effect of heating rate on nanoparticle formation of poly(N-isopropylacrylamide)- poly(ethylene glycol) block copolymer microgels, Langmuir, 16, 8543 (2000) https://doi.org/10.1021/la000489+
- J. Gao and Z. B. Hu, Optical properties of N-isopropylacrylamide microgel spheres in water, Langmuir, 18, 1360 (2002) https://doi.org/10.1021/la011405f
- L. S. Zha, Y. Zhang, W. L. Yang, and S. K. Fu, Monodisperse temperature-sensitive microcontainers, Adv. Mater., 14, 1090 (2002) https://doi.org/10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6
- X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres, Langmuir, 20, 5247 (2004). https://doi.org/10.1021/la036230j
- X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and Y. Li, Positively thermo-sensitive monodisperse core-shell microspheres, Adv. Funct. Mater., 13, 847 (2003) https://doi.org/10.1002/adfm.200304513
- K. Shiga, N. Muramatsu, and T. Kondo, Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size, J. Pharm. Pharmacol., 48, 891 (1996) https://doi.org/10.1111/j.2042-7158.1996.tb05995.x
- L. Y. Chu, S. H. Park, T. Yamaguchi, and S. Nakao, Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules, Langmuir, 18, 1856 (2002) https://doi.org/10.1021/la011385h
- F. Ikkai, S. Iwamoto, E. Adachi, and M. Nakajima, New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation, Colloid Polym. Sci., 283, 1149 (2005) https://doi.org/10.1007/s00396-005-1271-z
- L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. Nakao, Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules, J. Colloid Interface Sci., 265, 187 (2003) https://doi.org/10.1016/S0021-9797(03)00350-3
- G. M. Whitesides and A. D. Stroock, Flexible methods for microfluidics, Physics Today, 54, 42 (2001)
- J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21, 27 (2000) https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
- S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using "flow focusing" in microchannels, Appl. Phys. Lett., 82, 364 (2003) https://doi.org/10.1063/1.1537519
- D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett., 92, 054503 (2004) https://doi.org/10.1103/PhysRevLett.92.054503
- K. Ahn, J. Agresti, H. Chong, and D. A. Weitz, Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels, Appl. Phys. Lett., 88, 264105 (2006) https://doi.org/10.1063/1.2218058
- J. N. Lee, C. Park, and G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal. Chem. 75, 6544 (2003) https://doi.org/10.1021/ac0346712
- L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A. Weitz, Controllable monodisperse multiple emulsions, Angew. Chem. Int. Ed., 46, 8970 (2007) https://doi.org/10.1002/anie.200701358
- A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537 (2005) https://doi.org/10.1126/science.1109164
- R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L. Y. Chu, J. W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Designer emulsions using microfluidics, Materials Today, 11, 18 (2008)
- A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. L. Link, C. Holtz, and D. A. Weitz, Dripping, jetting, drops, and wetting: the magic of microfluidics, MRS Bull., 32, 702 (2007) https://doi.org/10.1557/mrs2007.145
- A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett., 99, 094502 (2007) https://doi.org/10.1103/PhysRevLett.99.094502
- A. M. Ganan-Calvo and J. M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., 87, 274501 (2001) https://doi.org/10.1103/PhysRevLett.87.274501
- H. M. Wyss, D.L. Blair, J. F. Morris, H. A. Stone, and D. A. Weitz, Mechanism for clogging of microchannels, Phys. Rev. E, 74, 061402 (2006) https://doi.org/10.1103/PhysRevE.74.061402
- S. Tomotika, Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate, Proc. R. Soc. London, Ser. A, 153, 0302 (1936)
- T. R. Powers, D. F. Zhang, R. E. Goldstein, and H. A. Stone, Propagation of a topological transition: the Rayleigh instability, Phys. Fluids, 10, 1052 (1998) https://doi.org/10.1063/1.869650
- D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Continuous-flow lithography for high-throughput microparticle synthesis, Nat. Mater., 5, 365 (2006) https://doi.org/10.1038/nmat1617
- J. H. Jang, D. Dendukuri, T. A. Hatton, E. L. Thomas and P. S. Doyle, A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography, Angew. Chem. Int. Ed., 46, 9027 (2007) https://doi.org/10.1002/anie.200703525
- M. Seo, Z. H. Nie, S. Q. Xu, M. Mok, P. C. Lewis, R. Graham, and E. Kumacheva, Continuous microfluidic reactors for polymer particles, Langmuir, 21, 11614 (2005) https://doi.org/10.1021/la050519e
- S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew. Chem. Int. Ed., 44, 724 (2005) https://doi.org/10.1002/anie.200462226
- H. Zhang, E. Tumarkin, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, Exploring microfluidic routes to microgels of biological polymers, Macromolecular Rapid Communications, 28, 527 (2007) https://doi.org/10.1002/marc.200600776
- D. Dendukuri, K. Tsoi, T. A. Hatton and P. S. Doyle, Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir, 21, 2113 (2005) https://doi.org/10.1021/la047368k
- Z. H. Nie, W. Li, M. Seo, S. Q. Xu, and E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly, J. Am. Chem. Soc., 128, 9408 (2006) https://doi.org/10.1021/ja060882n
- R. F. Shepherd, J. C. Conrad, S. K. Rhodes, D. R. Link, M. Marquez, D. A. Weitz, and J. A. Lewis, Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules, Langmuir, 22, 8618 (2006) https://doi.org/10.1021/la060759+
- Y. Hirokawa, H. Jinnai, Y. Nishikawa, T. Okamoto, and T. Hashimoto, Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels, Macromolecules, 32, 7093 (1999) https://doi.org/10.1021/ma990437v
- A. Suzuki, Y. Kobiki, and M. Yamazaki, Effects of network inhomogeneity in poly(N-isopropylacrylamide) gel on its surface structure, Jpn. J. Appl. Phys. Part 1., 42, 2810 (2003) https://doi.org/10.1143/JJAP.42.2810
- X. J. Ju, L. Y. Chu, X. L. Zhu, L. Hu, H. Song. and W. M. Chen, Effects of internal microstructures of poly(N-isopropylacrylamide) hydrogels on thermo- responsive volume phase-transition and controlled- release characteristics, Smart Mater. Struct., 15, 1767 (2006) https://doi.org/10.1088/0964-1726/15/6/031
- S. Takata, K. Suzuki, T. Norisuye. and M. Shibayama, Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature, Polymer, 43, 3101 (2002) https://doi.org/10.1016/S0032-3861(02)00089-7
- L. Y. Chu, J. W. Kim, R. K. Shah, and D. A. Weitz, Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics, Adv. Funct. Mater., 17, 3499 (2007) https://doi.org/10.1002/adfm.200700379
- J. W. Kim and A. S. Utada, A. Fernández-Nieves, Z. B. Hu, and D. A. Weitz, Fabrication of monodisperse gel shells and functional microgels in microfluidic devices, Angew. Chem. Int. Ed., 46, 1819 (2007) https://doi.org/10.1002/anie.200604206
- B. M. Discher, Y.Y. Won, D.S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Polymersomes: tough vesicles made from diblock copolymers, Science, 284, 1143 (1999) https://doi.org/10.1126/science.284.5417.1143
- A. T. Nikova, V. D. Gordon, G. Cristobal, and D. A. Weitz, Swollen vesicles and multiple emulsions from block copolymers, Macromolecules, 37, 2215 (2004) https://doi.org/10.1021/ma035638k
- M. Antonietti and S. Forster, Vesicles and liposomes: a self-assembly principle beyond lipids, Adv. Mater., 15, 1323 (2003) https://doi.org/10.1002/adma.200300010
- B. Sun and D. T. Chiu, Determination of the encapsulation efficiency of individual vesicles using single- vesicle photolysis and confocal single-molecule detection, Anal. Chem., 77, 2770 (2005) https://doi.org/10.1021/ac048439n
- M. Glavas-Dodov, E. Fredro-Kumbaradzi, K. Goracinova, and A. A. Hincal, The effects of lyophilization on the stability of liposomes containing 5-FU, Int. J. Pharm., 291, 79 (2005) https://doi.org/10.1016/j.ijpharm.2004.07.045
- Y. C. Tan, K. Hettiarachchi, M. Siu, and Y. P. Pan, Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles, J. Am. Chem. Soc., 128, 5656 (2006) https://doi.org/10.1021/ja056641h
- H. C. Shum, J. W. Kim, and D. A. Weitz, Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability, J. Am. Chem. Soc., 130, 9543 (2008) https://doi.org/10.1021/ja802157y