Browse > Article

A Potential Applicability of Microfluidic Techniques for Fabricating Advanced Cosmetic Materials  

Park, Sung-Hee (Amore-Pacific Co. R&D Center)
Kim, Han-Kon (Amore-Pacific Co. R&D Center)
Jeong, Kyu-Hyuck (College of Pharmacy, Sung Kyun Kwan University)
Kim, Jin-Woong (Amore-Pacific Co. R&D Center)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.34, no.4, 2008 , pp. 245-258 More about this Journal
Abstract
We describe here how we can use microfluidic technologies for fabricating functional materials that could be potentially utilized in cosmetics; these include void structures, functional particulate materials, shell materials, and multi-layered colloids. We can obtain these functional materials as microfluidic approaches provide precise control over both outer dimensions and inner morphology of emulsion drops in picoliter-volume scales with high throughput. We have confirmed that this technique has a great potential to fabricate novel particles and capsules with a variety of chemical compositions as well as higher orders of layers. This microfluidic approach will allow us to develop a lot of new techniques that are useful for a variety of applications, including delivery systems, chemical separations, bio-sensing, actuators, and so on. We do believe that these new techniques will help cosmetic industry not only give rise advanced functional materials and systems but also widen its product categories.
Keywords
microfluidics; drops; capsules; delivery; cosmetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. S. Kane, S. Takayama, P. Ostuni, D. E. Ingber, and G. M. Whitesides, Patterning proteins and cells using soft lithography, Biomaterials, 20, 2363 (1999)   DOI   ScienceOn
2 W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008)   DOI   ScienceOn
3 B. R. Saunders and B. Vincent, Microgel particles as model colloids: theory, properties and applications, Adv. Colloid. Interf. Sci., 80, 1 (1999)   DOI   ScienceOn
4 M. Das, H. Zhang, and E. Kumacheva, Microgels: old materials with new applications, Ann. Rev. Mater. Res., 36, 117 (2006)   DOI   ScienceOn
5 L. Bromberg and V. Alakhov, Effects of polyethermodified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control. Release, 88, 11 (2003)   DOI   ScienceOn
6 D. A. LaVan, D. M. Lynn, and R. Langer, Moving smaller in drug discovery and delivery, Nat. Rev. Drug Discov., 1, 77 (2002)   DOI
7 L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, Microgel colloidal crystals, J. Phys. Chem. B, 108, 19099 (2004)   DOI   ScienceOn
8 S. Q. Xu, J. G. Zhang, C. Paquet, Y. K. Lin, and E. Kumacheva, From hybrid microgels to photonic crystals, Adv. Funct. Mater., 13, 468 (2003)   DOI   ScienceOn
9 C. D. Jones and L. A. Lyon, Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels, Macromolecules, 36, 1988 (2003)   DOI   ScienceOn
10 B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Biodegradable block copolymers as injectable drugdelivery systems, Nature, 388, 860 (1997)   DOI   ScienceOn
11 L. S. Zha, Y. Zhang, W. L. Yang, and S. K. Fu, Monodisperse temperature-sensitive microcontainers, Adv. Mater., 14, 1090 (2002)   DOI   ScienceOn
12 X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres, Langmuir, 20, 5247 (2004).   DOI   ScienceOn
13 X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and Y. Li, Positively thermo-sensitive monodisperse core-shell microspheres, Adv. Funct. Mater., 13, 847 (2003)   DOI   ScienceOn
14 A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. L. Link, C. Holtz, and D. A. Weitz, Dripping, jetting, drops, and wetting: the magic of microfluidics, MRS Bull., 32, 702 (2007)   DOI
15 H. M. Wyss, D.L. Blair, J. F. Morris, H. A. Stone, and D. A. Weitz, Mechanism for clogging of microchannels, Phys. Rev. E, 74, 061402 (2006)   DOI
16 X. J. Ju, L. Y. Chu, X. L. Zhu, L. Hu, H. Song. and W. M. Chen, Effects of internal microstructures of poly(N-isopropylacrylamide) hydrogels on thermo- responsive volume phase-transition and controlled- release characteristics, Smart Mater. Struct., 15, 1767 (2006)   DOI   ScienceOn
17 S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew. Chem. Int. Ed., 44, 724 (2005)   DOI   ScienceOn
18 D. Dendukuri, K. Tsoi, T. A. Hatton and P. S. Doyle, Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir, 21, 2113 (2005)   DOI   ScienceOn
19 Z. H. Nie, W. Li, M. Seo, S. Q. Xu, and E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly, J. Am. Chem. Soc., 128, 9408 (2006)   DOI   ScienceOn
20 B. M. Discher, Y.Y. Won, D.S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Polymersomes: tough vesicles made from diblock copolymers, Science, 284, 1143 (1999)   DOI   ScienceOn
21 H. C. Shum, J. W. Kim, and D. A. Weitz, Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability, J. Am. Chem. Soc., 130, 9543 (2008)   DOI   ScienceOn
22 D. Suzuki, J. G. McGrath, H. Kawaguchi, and L. A. Lyon, Colloidal crystals of thermosensitive, core/shell hybrid microgels, J. Phys. Chem. C, 111, 5667 (2007)   DOI   ScienceOn
23 V. C. Lopez, J. Hadgraft, and M. J. Snowden, The use of colloidal microgels as a (trans)dermal drug delivery system, Int. J. Pharm., 292, 137 (2005)   DOI   ScienceOn
24 K. Iwai, Y. Matsumura, S. Uchiyama, and A. P. de Silva, Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range, J. Mater. Chem., 15, 2796 (2005)   DOI   ScienceOn
25 G. E. Morris, B. Vincent, and M. J. Snowden, Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198 (1997)   DOI   ScienceOn
26 Y. C. Tan, K. Hettiarachchi, M. Siu, and Y. P. Pan, Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles, J. Am. Chem. Soc., 128, 5656 (2006)   DOI   ScienceOn
27 A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett., 99, 094502 (2007)   DOI   ScienceOn
28 A. M. Ganan-Calvo and J. M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., 87, 274501 (2001)   DOI   ScienceOn
29 K. Ahn, J. Agresti, H. Chong, and D. A. Weitz, Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels, Appl. Phys. Lett., 88, 264105 (2006)   DOI   ScienceOn
30 R. F. Shepherd, J. C. Conrad, S. K. Rhodes, D. R. Link, M. Marquez, D. A. Weitz, and J. A. Lewis, Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules, Langmuir, 22, 8618 (2006)   DOI   ScienceOn
31 L. Y. Chu, S. H. Park, T. Yamaguchi, and S. Nakao, Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules, Langmuir, 18, 1856 (2002)   DOI   ScienceOn
32 W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008)   DOI   ScienceOn
33 D. J. Gan and L. A. Lyon, Tunable swelling kinetics in core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 7511 (2001)   DOI   ScienceOn
34 J. Gao and Z. B. Hu, Optical properties of N-isopropylacrylamide microgel spheres in water, Langmuir, 18, 1360 (2002)   DOI   ScienceOn
35 A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537 (2005)   DOI   ScienceOn
36 G. Zenkl, T. Mayr, and I. Khmant, Sugar-responsive fluorescent nanospheres, Macromol. Biosci., 8, 146 (2008)   DOI   ScienceOn
37 Y. Lu, Y. Mei, M. Ballauff, and M. Drechsler, Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, J. Phys. Chem. B, 110, 3930 (2006)   DOI   ScienceOn
38 D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett., 92, 054503 (2004)   DOI   ScienceOn
39 J. N. Lee, C. Park, and G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal. Chem. 75, 6544 (2003)   DOI   ScienceOn
40 S. Nayak, H. Lee, J. Chmielewski, and L. A. Lyon, Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels, J. Am. Chem. Soc., 126, 10258 (2004)   DOI   ScienceOn
41 G. M. Whitesides and A. D. Stroock, Flexible methods for microfluidics, Physics Today, 54, 42 (2001)
42 D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Continuous-flow lithography for high-throughput microparticle synthesis, Nat. Mater., 5, 365 (2006)   DOI   ScienceOn
43 J. Atencia and D. J. Beebe, Controlled microfluidic interfaces, Nature, 437, 648 (2005)   DOI   ScienceOn
44 A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, and H. J. Adler, Hybrid microgels with ZnS inclusions, Macromolecules, 38, 6610 (2005)   DOI   ScienceOn
45 D. J. Gan and L. A. Lyon, Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels, Macromolecules, 35, 9634 (2002)   DOI   ScienceOn
46 M. Seo, Z. H. Nie, S. Q. Xu, M. Mok, P. C. Lewis, R. Graham, and E. Kumacheva, Continuous microfluidic reactors for polymer particles, Langmuir, 21, 11614 (2005)   DOI   ScienceOn
47 T. Hoare and R. Pelton, Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels, Macromolecules, 40, 670 (2007)   DOI   ScienceOn
48 D. J. Gan and L. A. Lyon, Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 8203 (2001)   DOI   ScienceOn
49 J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21, 27 (2000)   DOI   ScienceOn
50 S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using "flow focusing" in microchannels, Appl. Phys. Lett., 82, 364 (2003)   DOI   ScienceOn
51 H. Zhang, E. Tumarkin, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, Exploring microfluidic routes to microgels of biological polymers, Macromolecular Rapid Communications, 28, 527 (2007)   DOI   ScienceOn
52 A. Suzuki, Y. Kobiki, and M. Yamazaki, Effects of network inhomogeneity in poly(N-isopropylacrylamide) gel on its surface structure, Jpn. J. Appl. Phys. Part 1., 42, 2810 (2003)   DOI
53 A. Jeenanong and H. Kawaguchi, SPR response of stimuli-sensitive microgel on sensor chip, Colloid Surface A, 302, 403 (2007)   DOI   ScienceOn
54 N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers, J. Am. Chem. Soc., 124, 12398 (2002)   DOI   ScienceOn
55 T. Chovan and A. Guttman, Microfabricated devices in biotechnology and biochemical processing, Trends Biotechnol., 20, 116 (2002)   DOI   ScienceOn
56 D. E. Bergbreiter, B. L. Case, Y. S. Liu, and J. W. Caraway, Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis, Macromolecules, 31, 6053 (1998)   DOI   ScienceOn
57 L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. Nakao, Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules, J. Colloid Interface Sci., 265, 187 (2003)   DOI   ScienceOn
58 T. R. Powers, D. F. Zhang, R. E. Goldstein, and H. A. Stone, Propagation of a topological transition: the Rayleigh instability, Phys. Fluids, 10, 1052 (1998)   DOI   ScienceOn
59 Y. C. Tan and A. P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab Chip, 5, 1178 (2005)   DOI   ScienceOn
60 F. Ilmain, T. Tanaka, and E. Kokufuta, Volume transition in a gel driven by hydrogen-bonding, Nature, 349, 400 (1991)   DOI
61 Y. Hirokawa, H. Jinnai, Y. Nishikawa, T. Okamoto, and T. Hashimoto, Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels, Macromolecules, 32, 7093 (1999)   DOI   ScienceOn
62 A. T. Nikova, V. D. Gordon, G. Cristobal, and D. A. Weitz, Swollen vesicles and multiple emulsions from block copolymers, Macromolecules, 37, 2215 (2004)   DOI   ScienceOn
63 K. Shiga, N. Muramatsu, and T. Kondo, Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size, J. Pharm. Pharmacol., 48, 891 (1996)   DOI   ScienceOn
64 L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A. Weitz, Controllable monodisperse multiple emulsions, Angew. Chem. Int. Ed., 46, 8970 (2007)   DOI   ScienceOn
65 A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, Microdroplets: a sea of applications?, Lab Chip, 8, 1244 (2008)   DOI   ScienceOn
66 H. Matsuoka, K. Fujimoto, and H. Kawaguchi, Stimuli-response of microsphere having poly(Nisopropylacrylamide) shell, Polym. J., 31, 1139 (1999)   DOI   ScienceOn
67 P. W. Zhu and D. H. Napper, Effect of heating rate on nanoparticle formation of poly(N-isopropylacrylamide)- poly(ethylene glycol) block copolymer microgels, Langmuir, 16, 8543 (2000)   DOI   ScienceOn
68 S. Tomotika, Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate, Proc. R. Soc. London, Ser. A, 153, 0302 (1936)
69 G. J. M. Bruin, Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis, 21, 3931 (2000)   DOI   ScienceOn
70 S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, Lab Chip, 8, 198 (2008)   DOI   ScienceOn
71 M. Antonietti and S. Forster, Vesicles and liposomes: a self-assembly principle beyond lipids, Adv. Mater., 15, 1323 (2003)   DOI   ScienceOn
72 B. Sun and D. T. Chiu, Determination of the encapsulation efficiency of individual vesicles using single- vesicle photolysis and confocal single-molecule detection, Anal. Chem., 77, 2770 (2005)   DOI   ScienceOn
73 J. W. Kim and A. S. Utada, A. Fernández-Nieves, Z. B. Hu, and D. A. Weitz, Fabrication of monodisperse gel shells and functional microgels in microfluidic devices, Angew. Chem. Int. Ed., 46, 1819 (2007)   DOI   ScienceOn
74 F. Ikkai, S. Iwamoto, E. Adachi, and M. Nakajima, New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation, Colloid Polym. Sci., 283, 1149 (2005)   DOI
75 M. Glavas-Dodov, E. Fredro-Kumbaradzi, K. Goracinova, and A. A. Hincal, The effects of lyophilization on the stability of liposomes containing 5-FU, Int. J. Pharm., 291, 79 (2005)   DOI   ScienceOn
76 R. Pelton, Temperature-sensitive aqueous microgels, Adv. Colloid. Interfac., 85, 1 (2000)   DOI   ScienceOn
77 S. Takata, K. Suzuki, T. Norisuye. and M. Shibayama, Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature, Polymer, 43, 3101 (2002)   DOI   ScienceOn
78 L. Y. Chu, J. W. Kim, R. K. Shah, and D. A. Weitz, Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics, Adv. Funct. Mater., 17, 3499 (2007)   DOI   ScienceOn
79 H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in droplets in microflulidic channels, Angew. Chem. Int. Ed., 45, 7336 (2006)   DOI   ScienceOn
80 C. W. Chen, M. Q. Chen, T. Serizawa, and M. Akashi, In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface- grafted poly(N-isopropylacrylamide), Chem. Commun., 7, 831 (1998)
81 J. H. Jang, D. Dendukuri, T. A. Hatton, E. L. Thomas and P. S. Doyle, A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography, Angew. Chem. Int. Ed., 46, 9027 (2007)   DOI   ScienceOn
82 S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv. Drug Deliver. Rev., 54, 135 (2002)   DOI   ScienceOn
83 V. Lapeyre, I. Gosse, S. Chevreux, and V. Ravaine, Monodispersed glucose-responsive microgels operating at physiological salinity, Biomacromolecules, 7, 3356 (2006)   DOI   ScienceOn
84 R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L. Y. Chu, J. W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Designer emulsions using microfluidics, Materials Today, 11, 18 (2008)