• Title/Summary/Keyword: particulate

Search Result 2,925, Processing Time 0.029 seconds

Effect of the Learning Image Combinations and Weather Parameters in the PM Estimation from CCTV Images (CCTV 영상으로부터 미세먼지 추정에서 학습영상조합, 기상변수 적용이 결과에 미치는 영향)

  • Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.573-581
    • /
    • 2020
  • Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

Development of a Cosmetic Ingredient Containing DHA Derivatives for Anti-inflammation, Anti-wrinkle, and Improvement of Skin Barrier Function (DHA 유도체를 이용한 항염, 항노화, 피부장벽 강화용 화장품 원료의 개발)

  • Lee, Miyoung;Lee, Gil-Yong;Suh, Jinyoung;Lee, Kyung min;Lee, Woojung;Cho, Hee Won;Yi, Jong-Jae;Seo, Jeong-Woo;Choi, Heonsik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • It is very important to control the inflammation of the skin because it can develop into diseases such as atopy as well as scarring and aging. In this work, we recently identified the in vitro synthesis of specialized pro-resolving mediators (SPMs) known to control inflammation in the human body and the applicability of cosmetics. Using recombinant protein of lipoxygenase from Glycine max, we succeeded to prepare mixtures of mono- or di-hydroxy DHA named as S-SPMs and used them for in vitro efficacy test. To investigate anti-inflammatory effect of S-SPMs, mRNA level of TNF-α and IL-6 were analyzed. Under UVB exposed condition, expression of both were decreased by S-SPMs treatment. And we observed reduced production of nitric oxide (NO) by S-SPMs application under the condition with diesel particulate matter (DPM). At the same experimental condition, malondialdehyde (MDA) production was decreased by S-SPMs, indicating the inhibitory effect of S-SPMs in lipid peroxidation. In addition, S-SPMs treatment resulted in reduction of matrix metalloproteinases-1 (MMP-1) expression and elevation of procollagen type I synthesis. Together with this, mRNA level of filaggrin and loricrin were increased by S-SPMs, indicating enhancement of skin barrier function. These results demonstrate that S-SPMs is a good candidate to develop as a cosmetic ingredient for anti-inflammation, anti-wrinkle, and improvement of skin barrier function.

Impact of Future Air Quality in East Asia under SSP Scenarios (SSP 시나리오에 따른 동아시아 대기질 미래 전망)

  • Shim, Sungbo;Seo, Jeongbyn;Kwon, Sang-Hoon;Lee, Jae-Hee;Sung, Hyun Min;Boo, Kyung-On;Byun, Young-Hwa;Lim, Yoon-Jin;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.439-454
    • /
    • 2020
  • This study investigates the change in the fine particulate matter (PM2.5) concentration and World Health Organization (WHO) air quality index (AQI) in East Asia (EA) under Shared Socioeconomic Pathways (SSPs). AQI is an indicator of increasing levels about health concern, divided into six categories based on PM2.5 annual concentrations. Here, we utilized the ensemble results of UKESM1, the climate model operated in Met Office, UK, for the analysis of long-term variation during the historical (1950~2014) and future (2015~2100) period. The results show that the spatial distributions of simulated PM2.5 concentrations in present-day (1995~2014) are comparable to observations. It is found that most regions in EA exceeded the WHO air quality guideline except for Japan, Mongolia regions, and the far seas during the historical period. In future scenarios containing strong air quality (SSP1-2.6, SSP5-8.5) and medium air quality (SSP2-4.5) controls, PM2.5 concentrations are substantially reduced, resulting in significant improvement in AQI until the mid-21st century. On the other hand, the mild air pollution controls in SSP3-7.0 tend to lead poor AQI in China and Korea. This study also examines impact of increased in PM2.5 concentrations on downward shortwave energy at the surface. As a result, strong air pollution controls can improve air quality through reduced PM2.5 concentrations, but lead to an additional warming in both the near and mid-term future climate over EA.

Investigation on the Preparation Method of TiO2-mayenite for NOx Removal (질소산화물 제거를 위한 TiO2-mayenite 제조 방법에 관한 연구)

  • Park, Ji Hye;Park, Jung Jun;Park, Hee Ju;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.304-310
    • /
    • 2020
  • In order to apply a photocatalyst (TiO2) to various building materials, TiO2-mayenite was prepared in this study. The TiO2 was synthesized using the sol-gel method by fixing titanium isopropoxide (TTIP) and urea at a ratio of 1 : 1. Later, they were calcined in a temperature range of 400-700 ℃ to analyze the properties according to temperature. BET, TGA, and XRD were used to analyze the physical and chemical properties of TiO2. The nitrogen oxide removal test was confirmed by measuring the change in the concentration of NO for 1 h according to KS L ISO 22197-1. The prepared TiO2 samples exhibited an anatase crystal structure below 600 ℃, and TiO2 (urea)-400 showed the highest nitrogen oxide removal rate at 2.35 µmol h-1. TiO2-mayenite was prepared using two methods: spraying TiO2 dispersion solution (s/s) and sol-gel solution (g/s). Through BET and XRD analysis, it was found that 5-TiO2 (g/s) prepared by spraying a sol-gel solution has maintained its crystallinity even after heat treatment. Also, 5-TiO2 (g/s)-500 showed the highest removal rate of 0.55 µmol h-1 in the nitrogen oxide removal test. To prepare TiO2-mayenite, it was confirmed that mayenite should be blended with TiO2 in a sol-gel state to maintain the crystal structure and exhibit a high nitrogen oxide removal rate.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

Emission Rates Estimation by Vehicle Type in Seoul Using the Vehicle Inspection Data (차량 검사 데이터를 활용한 서울시 자동차 유형별 배출 가스량 원단위 산정)

  • Lee, Hyosun;Han, Yohee;Park, Shin Hyoung;Hwang, Ho Hyun;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.177-191
    • /
    • 2021
  • One of the major causes of serious air pollution worldwide is emissions from road transportation. A number of countries are working to reduce vehicle emissions, and the Seoul Metropolitan Government is also implementing active policies to reduce emissions by setting a target of 40% by 2030. Implementing these policies requires the introduction of practical indicators. Most of the domestic emissions are calculated by the emission coefficient, a function of speed at the National Institute of Environmental Research under the Ministry of Environment, but the dynamic variable speed is limited to being used as an indicator of the number of eco-friendly vehicles. Therefore, this study calculated the emission rates in Seoul using the vehicle registration data of Seoul and the vehicle inspection data from the Korea Transportation Safety Authority. The tendency of emissions was determined according to key variables such as vehicle type, fuel and mileage. Emissions were based on carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter measured by vehicle inspection from the Korea Transportation Safety Authority. As a result, the emission rates showed a significant trend according to the model year and mileage. This can be used as a policy indicator to preferentially switch commercial vehicles with old model years and long mileage when switching eco-friendly vehicles in Seoul.

A Study on the Characteristics of Ion, Carbon, and Elemental Components in PM2.5 at Industrial Complexes in Ansan and Siheung (안산·시흥 산업단지 지역 PM2.5 중 이온, 탄소, 원소성분의 특성 연구)

  • Lee, Hye-Won;Lee, Seung-Hyeon;Jeon, Jeong-In;Lee, Jeong-Il;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.66-74
    • /
    • 2022
  • Background: The health effects of particulate matter (PM2.5) bonded with various harmful chemicals differ based on their composition, so investigating and managing their concentrations and composition is vital for long-term management. As industrial complexes emit considerable quantities of pollutants, higher PM2.5 concentrations and chemical component effects are expected than in other places. Objectives: We investigated the concentration distribution ratios of PM2.5 chemical components to provide basic data to inform future major emissions control and PM2.5 reduction measures in industrial complexes. Methods: We monitored five sites near the Ansan and Siheung industrial complexes from August 2020 to July 2021. Samples were collected and analyzed twice per week in spring/winter and once per week in summer/autumn according to the National Institute of Environmental Research in the Ministry of Environments' Air Pollution Monitoring Network Installation and Operation Guidelines. We investigated and compared composition ratios of 29 ions, carbon, and elemental components in PM2.5. Results: The analysis of PM2.5 components at the five sites revealed that ion components accounted for the greatest total mass at approximately 50% while carbon components and elemental components contributed 23~28% and 8~10%, respectively. Among the ionic components, NO3- occupies the greatest proportion. OC occupies the greatest proportion of the carbon components and sulphur occupies the greatest proportion of elemental components. Conclusions: This study investigated the concentration distribution ratios of PM2.5 chemical components in industrial complexes. We believe these results provide basic chemical component concentration ratio data for establishing future air management policies and plans for the Ansan and Siheung industrial complexes.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).

An Analysis of Indoor Air Quality and Risk Assessment for One-room Housing around the University in the Post-Corona Era (포스트 코로나 시대의 대학교 주변 원룸형 주택에 대한 실내 공기질 분석 및 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.3
    • /
    • pp.23-30
    • /
    • 2022
  • In this study, in order to grasp the current situation of indoor environmental pollution and indoor ventilation in one-room around the university in the post-corona era, we analyzed the experimental data and conducted a questionnaire survey on university students. By analyzing the content, the effects of formaldehyde, dust and other pollution on the human body, which are usually not easily detectable, are digitized and more easily taken into account. Among the experimental results, the concentration of VOC and HCHO, gas pollutants among indoor pollutants, exceeded the recommended criteria of the Ministry of Environment in most studio apartments. Overall, the average CO2 concentration was lower than the Ministry of Environment's maintenance standard (1000ppm), but it was relatively high in summer and winter, and it is believed to be caused by cooling and heating in an enclosed space. The levels of PM2.5 and PM10, particulate pollutants, increased in November and December, and it is believed that ventilation defects due to degradation in external temperature. There was no clear difference between the two types, and there was a very high correlation between PM2.5 and PM10, HCHO and VOC. It was found that temperature was closely correlated with all sources except CO2, and humidity was closely correlated with all sources except PM2.5 and PM10. Health risk assessment was conducted for formaldehyde. The average ECR of studio R2 in May was 3.91E-4, and the ECR figure in September was 3.65E-4, which was very high compared to other residential spaces. The R2 level was calculated as 4 people per 10,000 people in the lifetime risk of cancer of residents, exceeding the allowable risk. R8 also showed higher ECR results than other spaces after R2, especially in October, 2.01E-4, six times higher than R7 measured in October, and 1.87E-4 in July, four times higher than R9.