Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.4.439

Impact of Future Air Quality in East Asia under SSP Scenarios  

Shim, Sungbo (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Seo, Jeongbyn (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Kwon, Sang-Hoon (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Lee, Jae-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Sung, Hyun Min (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Boo, Kyung-On (Operation Systems Development Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Byun, Young-Hwa (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Lim, Yoon-Jin (Numerical Model Development Division, Numerical Modeling Center, Korea Meteorological Administration)
Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences, Korea Meteorological Administration)
Publication Information
Atmosphere / v.30, no.4, 2020 , pp. 439-454 More about this Journal
Abstract
This study investigates the change in the fine particulate matter (PM2.5) concentration and World Health Organization (WHO) air quality index (AQI) in East Asia (EA) under Shared Socioeconomic Pathways (SSPs). AQI is an indicator of increasing levels about health concern, divided into six categories based on PM2.5 annual concentrations. Here, we utilized the ensemble results of UKESM1, the climate model operated in Met Office, UK, for the analysis of long-term variation during the historical (1950~2014) and future (2015~2100) period. The results show that the spatial distributions of simulated PM2.5 concentrations in present-day (1995~2014) are comparable to observations. It is found that most regions in EA exceeded the WHO air quality guideline except for Japan, Mongolia regions, and the far seas during the historical period. In future scenarios containing strong air quality (SSP1-2.6, SSP5-8.5) and medium air quality (SSP2-4.5) controls, PM2.5 concentrations are substantially reduced, resulting in significant improvement in AQI until the mid-21st century. On the other hand, the mild air pollution controls in SSP3-7.0 tend to lead poor AQI in China and Korea. This study also examines impact of increased in PM2.5 concentrations on downward shortwave energy at the surface. As a result, strong air pollution controls can improve air quality through reduced PM2.5 concentrations, but lead to an additional warming in both the near and mid-term future climate over EA.
Keywords
SSP scenarios; PM2.5; air quality index; East Asia; UKESM1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Allen, R. J., and Coauthors, 2020: Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys., 20, 9641-9663, doi:10.5194/acp-20-9641-2020.   DOI
2 Archibald, A. T., and Coauthors, 2019: Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1. Geosci. Model Dev., 13, 1223-1266, doi:10.5194/gmd-13-1223-2020.   DOI
3 Chowdhury, S., S. Dey, and K. R. Smith, 2018: Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun., 9, 318, doi:10.1038/s41467-017-02755-y.   DOI
4 Colette, A., and Coauthors, 2011: Air quality trends in Europe over the past decade: a first multi-model assessment. Atmos. Chem. Phys., 11, 11657-11678, doi:10.5194/acp-11-11657-2011.   DOI
5 Colette, A., and Coauthors, 2012: Future air quality in Europe: a multi-model assessment of projected exposure to ozone. Atmos. Chem. Phys., 12, 10613-10630, doi:10.5194/acp-12-10613-2012.   DOI
6 Colette, A., and Coauthors, 2013: European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmos. Chem. Phys., 13, 7451-7471, doi:10.5194/acp-13-7451-2013.   DOI
7 Collins, W. J., and Coauthors, 2017: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585-607, doi:10.5194/gmd10-585-2017.   DOI
8 Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250-2253.   DOI
9 Mitchell, J. F. B., T. C. Johns, J. M. Gregory, and S. F. B. Tett, 1995: Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504.   DOI
10 Mulcahy, J. P., and Coauthors, 2018: Improved aerosol processes and effective radiative forcing in HadGEM3 and UKESM1. J. Adv. Modeling Earth Sys., 10, 2786-2805.   DOI
11 Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. J. Adv. Modeling Earth Sys., 11, 4513-4558, doi:10.1029/2019MS001739.   DOI
12 O'Connor, F. M., and Coauthors, 2020: Assessment of preindustrial to present-day anthropogenic climate forcing in UKESM1. Atmos. Chem. Phys., in review, doi:10.5194/acp-2019-1152.   DOI
13 OECD, 2016: The Economic Consequences of Outdoor Air Pollution. OECD, 115 pp, doi:10.1787/9789264257474-en.   DOI
14 O'Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change, 42, 169-180, doi:10.1016/j.gloenvcha.2015.01.004.   DOI
15 Park, S.-S., S.-A. Jung, B.-J. Gong, S.-Y. Cho, and S.-J. Lee, 2013: Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring supersite in Korea. Aerosol Air Qual. Res., 13, 957-976, doi: 10.4209/aaqr.2012.07.0184.   DOI
16 Reis, L. A., L. Drouet, R. V. Dingenen, and J. Emmerling, 2018: Future global air quality indices under different socioeconomic and climate assumptions. Sustainability, 10, 3645, doi:10.3390/su10103645.   DOI
17 Shim, S., J. Kim, S. S. Yum, H. Lee, K.-O. Boo, and Y.-H. Byun, 2019: Effects of anthropogenic and natural forcings on the summer temperature variations in East Asia during the 20th century. Atmosphere, 10, 690, doi:10.3390/atmos10110690.   DOI
18 Silva, R. A., and Coauthors, 2017: Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Change, 7, 647-651, doi:10.1038/nclimate3354.   DOI
19 Turnock, S. T., and Coauthors, 2020: Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys., in review, doi:10.5194/acp-2019-1211.   DOI
20 Tai, A. P. K., L. J. Mickley, and D. J. Jacob, 2012: Impact of 2000-2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes. Atmos. Chem. Phys., 12, 11329-11337, doi:10.5194/acp-12-11329-2012.   DOI
21 Fiore, A. M., and Coauthors, 2012: Global air quality and climate. Chem. Soc. Rev., 41, 6663-6683, doi:10.1039/c2cs35095e.   DOI
22 Wang Y. Q., X. Y. Zhang, J. Y. Sun, X. C. Zhang, H. Z. Che, and Y. Li, 2015: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys., 15, 13585-13598, doi:10.5194/acp-15-13585-2015.   DOI
23 WHO, 2016: Burden of disease from ambient and household air pollution. Accessed August 2, 2020 [Available online at https://who.int/phe/health_topics/outdoorair/databases/en/].
24 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937-1958, doi:10.5194/gmd-9-1937-2016.   DOI
25 Gong, S. Y., 2016: Characteristics and concentrations of fine particulate matter. In J. Yee, Eds., Korean Social Trends 2016, Statistics Research Institute, 256-261.
26 Griffiths, P. T., and Coauthors, 2020: Tropospheric ozone in CMIP6 Simulations. Atmos. Chem. Phys., in review, doi:10.5194/acp-2019-1216.   DOI
27 Han, S. H., and Y. P. Kim, 2015: Long-term trends of the concentrations of mass and chemical composition in PM2.5 over Seoul. J. Korean Soc. Atmos. Environ., 31, 143-156, doi:10.5572/KOSAE.2015.31.2.143 (in Korean with English abstract).   DOI
28 Ikeda, K., K. Yamaji, Y. Kanaya, F. Taketani, X. Pan, Y. Komazaki, J. Kurokawa, and T. Ohara, 2014: Sensitivity analysis of source regions to PM2.5 concentration at Fukue Island, Japan. J. Air Waste. Manage., 64, 445-452.   DOI
29 Hong, S. Y., J. J. Lee, J. Y. Lee, and Y. P. Kim, 2008: Comparison of the fine particle concentrations in Seoul and other foreign mega-cities. Par. Aerosol Res., 4, 1-7 (in Korean with English abstract).
30 Hwang, I. C., 2019: Health Effects of aging and fine particle matter. The Seoul Institute Policy Report, no. 287, 20 pp [Available online at https://www.si.re.kr/node/62784].
31 Koo, Y.-S., D.-R. Choi, H.-Y. Kwon, Y.-K. Jang, and J.-S. Han, 2015: Improvement of PM10 prediction in East Asia using inverse modeling. Atmos. Environ., 106, 318-328, doi:10.1016/j.atmosenv.2015.02.004.   DOI
32 KOSIS, 2020: Degree of air pollution by measurement network data download. Accessed July 20, 2020. Korean Statistical Information Service [Available online at http://kosis.kr/].
33 Lee, S., C.-H. Ho, Y. G. Lee, H.-J. Choi, and C.-K. Song, 2013: Influence of trasboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16-20, 2008. Atmos. Environ., 77, 430-439, doi:10.1016/j.atmosenv.2013.05.006.   DOI
34 Mann, G. W., K. S. Carslaw, D. V. Spracklen, D. A. Ridley, P. T. Manktelow, M. P. Chipperfied, S. J. Pickering, and C. E. Johnson, 2010: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev., 3, 519-551, doi:10.5194/gmd-3-519-2010.   DOI
35 ME, 2019a: Ministry of Environment comprehensive plan for managing particulate matter (2020-2024). Ministry of Environment Report, 92 pp.
36 ME, 2019b: Special countermeasures against high particulate matter concentration episodes. Ministry of Environment Report, 19 pp.