Browse > Article
http://dx.doi.org/10.7464/ksct.2020.26.4.293

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region  

Song, Aran (Clean Energy System Research Department, Korea Institute of Industrial Technology)
Jeong, Nakwon (Clean Energy System Research Department, Korea Institute of Industrial Technology)
Bae, Sungwoo (Clean Energy System Research Department, Korea Institute of Industrial Technology)
Hwang, Jungho (Mechanical Engineering Department, Yonsei University)
Lee, Changyeop (Clean Energy System Research Department, Korea Institute of Industrial Technology)
Kim, Daehae (Clean Energy System Research Department, Korea Institute of Industrial Technology)
Publication Information
Clean Technology / v.26, no.4, 2020 , pp. 293-303 More about this Journal
Abstract
According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.
Keywords
TDLAS; WMS; Sulfur dioxide ($SO_2$); Multi-absorption lines; Mid-IR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Geiser, P., "New Opportunities in Mid-Infrared Emission Control," Sensors, 15(9), 22724-22736 (2015).   DOI
2 Kim, T. O., Ishida, T., Adachi, M., Okuyama, K., and Seinfeld, J. H., "Nanometer-sized Particle Formation from NH3/SO2/H2O/air Mixtures by Ionizing Irradiation," Aerosol Sci. Technol., 29(2), 111-125 (1998).   DOI
3 Khaniabadi, Y. O., Polosa, R., Chuturkova, R. Z., Daryanoosh, M., Goudarzi, G., Borgini, A., Tittarelli, A., Basiri, H., Armin, H., Nourmoradi, H., Babaei, A. A., and Naserian, P., "Human Health Risk Assessment Due to Ambient PM10 and SO2 by an Air Quality Modeling Technique," Process Saf. Environ. Prot., 111, 346-354 (2017).   DOI
4 Sappey, A. D., Masterson, P., Huelson, E., Howell, J., Estes, M., Hofvander, H., and Jobson, A., "Results of Closed-loop Coal-fired Boiler Operation using a TDLAS Sensor and Smart Process Control Software," Combust. Sci. Technol., 183(11), 1282-1295 (2011).   DOI
5 Nelson, C. M., Knight, K. S., Bonanno, A. S., Serio, M. A., Solomon, P. R., and Halter, M. A., "On-line FT-IR Analysis of Fossil Fuel-fired Power Plants," Opt. Sensing Environ. Monitoring, 15 (1993).
6 Teichert, H., Fernholz, T., and Ebert, V., "Simultaneous in Situ Measurement of CO, H2O, and Gas Temperatures in a Full-sized Coal-fired Power Plant by Near-infrared Diode Lasers," Appl. Opt., 42(12), 2043 (2003).   DOI
7 Hieta, T., and Merimaa, M., "Simultaneous Detection of SO2, SO3 and H2O using QCL Spectrometer for Combustion Applications," Appl. Phys. B Lasers Opt., 117(3), 847-854 (2014).   DOI
8 Genner, A., Martin-Mateos, P., Moser, H., Waclawek, J. P., and Lendl, B., "Extending the Linear Concentration Range of a Multi-gas-analyzer," Quantum Sensing and Nano Electronics and Photonics XVI, SPIE 10926, 95 (2019).
9 Li, Y. Q., and Demerjian, K. L., "Measurement of Formaldehyde, Nitrogen Dioxide, and Sulfur Dioxide at Whiteface Mountain using a Dual Tunable Diode Laser System," J. Geophys. Res. D Atmos., 109(16), 1-11, (2004).
10 Henningsen, J., and Hald, J., "Quantitative Analysis of Dilute Mixtures of SO2 in N2 at 7.4 µm by Difference Frequency Spectroscopy," Appl. Phys. B Lasers Opt., 76(4), 441-449 (2003).   DOI
11 Rawlins, W. T., Hensley, J. M., Sonnenfroh, D. M., Oakes, D. B., and Allen, M. G., "Quantum Cascade Laser Sensor for SO2 and SO3 for Application to Combustor Exhaust Streams," 2005 Conf. Lasers Electro-Optics, CLEO, 44(31), 6635-6643 (2005).
12 Berkoff, T. A., Wormhoudt, J. C., and Miake-Lye, R. C., "Measurement of SO2 and SO3 using a Tunable Diode Laser System," Environ. Monitoring Remediation Technol., 3534, 686-693 (1999).   DOI
13 Gao, Q., Zhang, Y., Yu, J., Wu, S., Zhang, Z., Zheng, F., Lou, X., and Guo, W., "Tunable Multi-mode Diode Laser Absorption Spectroscopy for Methane Detection," Sens. Actuator A Phys., 199, 106-110 (2013).   DOI
14 Lou, X., Somesfalean, G., Chen, B., and Zhang, Z., "Oxygen Measurement by Multimode Diode Lasers Employing Gas Correlation Spectroscopy," Appl. Opt., 48(5), 990-997 (2009).   DOI
15 Supplee, J. M., Whittaker, E. A., and Lenth, W., "Theoretical Description of Frequency Modulation and Wavelength Modulation Spectroscopy," Appl. Opt., 33(27), 6294-6302 (1994).   DOI
16 Zhou, X., "Diode-laser Absorption Sensors for Combustion Control," 186 (2005).
17 Reid, J., and Labrie, D., "Second-harmonic Detection with Tunable Diode Lasers-comparison of Experiment and Theory," Appl. Phys. B Photophysics Laser Chem., 26(3), 203-210 (1981).   DOI
18 Philippe, L. C., and Hanson, R. K., "Laser Diode Wavelength-modulation Spectroscopy for Simultaneous Measurement of Temperature, Pressure, and Velocity in Shock-heated Oxygen Flows," Appl. Opt., 32(30), 6090 (1993).   DOI
19 Liu, J. T. C., Jeffries, J. B., and Hanson, R. K., "Wavelength Modulation Absorption Spectroscopy with 2f Detection using Multiplexed Diode Lasers for Rapid Temperature Measurements in Gaseous Flows," Appl. Phys. B Lasers Opt., 78(3-4), 503-511 (2004).   DOI
20 Gordon, L. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. -M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Csaszar, A. G., Devi, V. M., Furtenbacher, T., Harrision, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, O. L., Moazzen-Ahmadi, N., Muller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., and Zak, E. J., "The HITRAN2016 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transf., 203, 3-69 (2017).
21 Rieker, G. B., Jeffries, J. B., and Hanson, R. K., "Calibration-free Wavelength-modulation Spectroscopy for Measurements of GAS Temperature and Concentration in Harsh Environments," Appl. Opt., 48(29), 5546-5560 (2009).   DOI
22 Van der Lans, R. P., Glarborg, P., and Dam-Johansen, K., "Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners," Prog. Energy Combust. Sci., 23, 349-377 (1997).   DOI
23 McRae, G. J., "A Simple Procedure for Calculating Atmospheric Water Vapor Concentration," J. Air Pollut. Contr. Assoc., 30(4), 394-394 (1980).   DOI
24 Molloy, K. C., "Group Theory for Chemists : Fundamental Theory and Applications," Oxford, Woodhead Publishing, 218 (2010).
25 Flaud, J.-M., Lafferty, W. J., and Sams, R. L., "Line Intensities for the v1, v3 and v1+v3 bands of 34SO2," J. Quant. Spectrosc. Radiat. Transf., 110(9-10), 669-674 (2009).   DOI
26 Gu, H., Liu, L., Li, Y., Chen, R., Wen, L., and Wang, J., "Sub-ppm NH3 Sensor for Control of De-nitrification Process using Diode Laser Spectroscopy" International Conference on Optical Instruments and Technology : Optoelectronic Measurement Technology and Applications, SPIE 7160, (2008).