• Title/Summary/Keyword: partial differential equations

Search Result 518, Processing Time 0.025 seconds

IMPULSIVE FUZZY SOLUTIONS FOR ABSTRACT SECOND ORDER PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • CHALISHAJAR, DIMPLEKUMAR N.;RAMESH, R.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.71-77
    • /
    • 2022
  • This work considers the existence and uniqueness of fuzzy solutions for impulsive abstract partial neutral functional differential systems. To establish the existence and uniqueness, we apply the concept of impulse, semi group theory and suitable fixed point theorem.

A SIXTH-ORDER OPTIMAL COLLOCATION METHOD FOR ELLIPTIC PROBLEMS

  • Hong, Bum-Il;Ha, Sung-Nam;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.513-522
    • /
    • 1999
  • In this paper we present a collocation method based on biquintic splines for a fourth order elliptic problems. To have a better accuracy we formulate the standard collocation method by an appro-priate perturbation on the original differential equations that leads to an optimal approximating scheme. As a result computational results confirm that this method is optimal.

MAXIMAL DOMAINS OF SOLUTIONS FOR ANALYTIC QUASILINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

  • Han, Chong-Kyu;Kim, Taejung
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1171-1184
    • /
    • 2022
  • We study the real-analytic continuation of local real-analytic solutions to the Cauchy problems of quasi-linear partial differential equations of first order for a scalar function. By making use of the first integrals of the characteristic vector field and the implicit function theorem we determine the maximal domain of the analytic extension of a local solution as a single-valued function. We present some examples including the scalar conservation laws that admit global first integrals so that our method is applicable.

OSCILLATIONS OF CERTAIN NONLINEAR DELAY PARABOLIC BOUNDARY VALUE PROBLEMS

  • Zhang, Liqin;Fu, Xilin
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.137-149
    • /
    • 2001
  • In this paper we consider some nonlinear parabolic partial differential equations with distributed deviating arguments and establish sufficient conditions for the oscillation of some boundary value problems.

THE FORMAL LINEARIZATION METHOD TO MULTISOLITON SOLUTIONS FOR THREE MODEL EQUATIONS OF SHALLOW WATER WAVES

  • Taghizadeh, N.;Mirzazadeh, M.;Paghaleh, A. Samiei
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.381-391
    • /
    • 2012
  • In this paper, the formal linearization method is used to construct multisoliton solutions for three model of shallow water waves equations. The three models are completely integrable. The formal linearization method is an efficient method for obtaining exact multisoliton solutions of nonlinear partial differential equations. The method can be applied to nonintegrable equations as well as to integrable ones.

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

SOLVING OF SECOND ORDER NONLINEAR PDE PROBLEMS BY USING ARTIFICIAL CONTROLS WITH CONTROLLED ERROR

  • Gachpazan, M.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.173-184
    • /
    • 2004
  • In this paper, we find the approximate solution of a second order nonlinear partial differential equation on a simple connected region in $R^2$. We transfer this problem to a new problem of second order nonlinear partial differential equation on a rectangle. Then, we transformed the later one to an equivalent optimization problem. Then we consider the optimization problem as a distributed parameter system with artificial controls. Finally, by using the theory of measure, we obtain the approximate solution of the original problem. In this paper also the global error in $L_1$ is controlled.

MOSAICFUSION: MERGING MODALITIES WITH PARTIAL DIFFERENTIAL EQUATION AND DISCRETE COSINE TRANSFORMATION

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.389-406
    • /
    • 2023
  • In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF