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IMPULSIVE FUZZY SOLUTIONS FOR ABSTRACT SECOND
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EQUATIONS
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Abstract. This work considers the existence and uniqueness of fuzzy solu-
tions for impulsive abstract partial neutral functional differential systems.
To establish the existence and uniqueness, we apply the concept of impulse,
semi group theory and suitable fixed point theorem.
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1. Introduction

Differential equation is an integral aspect of pure and applied mathematics
that is used in a variety of fields. When analyzing a real-world phenomenon, it is
often important to deal with vague concepts. In this case, fuzzy set theory may
be one of the better non-statistical or non-probabilistic approaches, leading us to
examine fuzzy differential equations theory. A rich literature in this field justifies
the significance of the branch of fuzzy differential equation in fuzzy analysis. For
details, see [1, 2, 4, 5, 6, 7, 9, 11].

In recent years, the theory of impulsive differential equations has become a
hot topic of research. Further, the introduction of delay in fuzzy model allows to
consider more general situations. For more details, we refer the reader to [3, 10].

We have tried in this work to describe the existence of fuzzy solutions for the
following second order abstract differential system using α techniques of fuzzy
numbers.

d2

dt2
(p(t)− r(t, pt)) = Ap(t) + F (t, pt)), t ∈ [0, T ] = J (1)

p(0) = ζ, (2)
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d

dt
(p(t)− r(t, pt))|t=0 = z (3)

∆p(ti) = Ii
′(pti), t ̸= ti (4)

where A is a fuzzy coefficient, En is the set of all convex upper semi-continuously
fuzzy numbers on Rn. The continuous functions r, p, F : J ×En → En are non-
linear, ζ ∈ En, I

′

i ∈ C(En, En) are bounded functions and ∆p(ti) = p(t+i ) −
p(t−i ), where pt represents the history where pt(Θ) = p(t+Θ), Θ < 0.

So far to the best of our understanding, the existence and uniqueness of so-
lutions for the given differential System (1) − (4) defined in the abstract form
are not yet studied using fuzzy techniques, and this serves as a primary moti-
vation for this present work. This work is structured as follows: In Section 2
some preliminary concepts of fuzzy sets and fuzzy numbers are provided, and
in Section 3, the existence and uniqueness of fuzzy solutions are established for
System (1)− (4).

2. Preliminaries

Here, we review few basic concepts,remarks and properties of fuzzy numbers
which will be used through out this work are presented. They have been intro-
duced to deal with imprecise numerical quantities in a practical way. A fuzzy
number is a generalization of a regular, real number in that it refers to a related
set of possible values, each with its own weight between 0 and 1. For more on
fuzzy numbers and its properties, refer [8, 12].

Let Ln be the set of all non-empty compact, convex subsets of Rn.For M,N ∈
Qn and for any β ∈ R the addition and multiplication operation are represented
as

M +N = {m+ n/m ∈ M,n ∈ N}, G = {βg/g ∈ G}

In the universe set X, a fuzzy set is defined as the mapping from m → [0, 1].Here
m is assigned as the degree of membership and it’s value lies between 0 and 1.
For the fuzzy set m defined in n-dimensional space and for α ∈ (0, 1] ,we denote
as,

[m]α = {x ∈ Rn/m(x) ≥ α}

If m be a fuzzy subset of X; the support of m, denoted as supp(m), is the
crisp subset of X whose elements all have nonzero membership values in m
i.e., supp(m) = {x ∈ X|m(x) > 0}.For any α ∈ [0, 1], m is called compact if
[m]α ∈ Ln.
The collection of all fuzzy sets of Rn is called as En which satisfies the conditions
such as m is normal, fuzzy convex, upper semi-continuous and [m]0 is compact.
For any m,n ∈ En the complete metric d̄ is defined as

b∞(m,n) = sup
0<α≤1

d̄([m]α, [n]α)
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Let m,n ∈ C(J : En). Then supremum metric is defined as

B
′
(m,n) = sup

0<α≤T
b∞([m]α, [n]α)

3. Main results

In this section, we define the existence and uniqueness of fuzzy solutions using
Banach fixed point theorem for (1)− (4) .
We shall consider a space Γ = p : J → En to define the solution for (1)− (4)

Let us define Γ
′
= Γ ∩ C([0, T ] : En)

Definition 3.1. A function p : J → En is an integral solution of System (1)−(4),
then

p(t) = C(t)(ζ(0)− r(0, ζ)) +N(t)z + r(t, pt) (5)

+

∫ t

0

AN(t− s)r(s, ps)ds+

∫ t

0

N(t− s)F (s, ps))ds

+
∑

0<ti<t

C(t− ti)I
′

i(pti), t ∈ J.

For the fuzzy numbers N(t) and C(t), we assume the followings:

(H1) Let [N(t)]α = [Nα
l (t), N

α
r (t)], N(0) = I, |Nα

j (t)| ≤ m1, m1 > 0,
|AN(t)| ≤ m0,m0 > 0 ∀ t ∈ J = [0, T ].

(H2) Let [C(t)]α = [Cα
l (t), C

α
r (t)], C(0) = I and Cα

j (t)(j = l, r) , |Cα
j (t)| ≤

m2, m2 > 0 ∀ t ∈ J = [0, T ].

(H3) ∃ positive constants dg, df > 0 for the functions r and F which are
strongly measurable satisfying the Lipschitz conditions

d̄([r(t, p)]α, [r(t, q)]α) ≤ dgd̄([p(t)]
α, [q(t)]α)

d̄([F (t, p)]α, [F (t, q)]α) ≤ df d̄([p(t)]
α, [q(t)]α)

(H4) ∃ positive constant di such that

d̄
(
[I

′

i(p(t
−
i ))]

α, [I
′

i(q(t
−
i ))]

α
)
≤ did̄([p(t)]

α, [q(t)]α)

(H5)
(
m1(m0dg + df )T + dg + di

)
< 1 , then System (1) − (4) has a fuzzy

solution which is unique.

Theorem 3.2. If the Hypotheses (H1)− (H5) holds, then the System (1)− (4)
has a fuzzy solution which is unique.

Proof.



74 D.N. Chalishajar and R. Ramesh

We have,

E0p(t) = C(t)(ζ(0)− r(0, ζ)) +N(t)z + r(t, pt)

+

∫ t

0

AN(t− s)r(s, ps)ds+

∫ t

0

N(t− s)F (s, ps)ds

+
∑

0<ti<t

C(t− ti)I
′

i(pti), t ∈ J.

Similarly,

E0q(t) = C(t)(ζ(0)− r(0, ζ)) +N(t)z + r(t, qt)

+

∫ t

0

AN(t− s)r(s, qs)ds+

∫ t

0

N(t− s)F (s, qs)ds

+
∑

0<ti<t

C(t− ti)I
′

i(qti), t ∈ J.

Now,

d̄([E0p(t)]
α, [E0q(t)]

α)

≤ d̄

([
C(t)(ζ(0)− r(0, ζ)) +N(t)z + r(t, pt)

+

∫ t

0

AN(t− s)r(s, ps)ds+

∫ t

0

N(t− s)F (s, ps)ds+
∑

0<ti<t

C(t− ti)I
′

i(pti)

]α
,[

C(t)(ζ(0)− r(0, ζ)) +N(t)z + r(t, qt)

+

∫ t

0

AN(t− s)r(s, qs)ds+

∫ t

0

N(t− s)F (s, qs)ds+
∑

0<ti<t

C(t− ti)I
′

i(qti)

]α)
≤ d̄

(
[C(t)ζ(0)]α + [C(t)r(0, ζ)]α + [N(t)z]α + [r(t, pt)]

α

+

[ ∫ t

0

AN(t− s)r(s, ps)ds

]α
+

[ ∫ t

0

N(t− s)F (s, ps)ds

]α
+

[ ∑
0<ti<t

C(t− ti)I
′

i(pti)

]α
,

[C(t)ζ(0)]α + [C(t)r(0, ζ)]α + [N(t)z]α + [r(t, qt)]
α

+

[ ∫ t

0

AN(t− s)r(s, qs)ds

]α
+

[ ∫ t

0

N(t− s)F (s, qs)ds

]α
+

[ ∑
0<ti<t

C(t− ti)I
′

i(qti)

]α)
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≤ d̄([r(t, pt)]
α, [r(t, qt)]

α)

+ d̄

([∫ t

0

AN(t− s)r(s, ps)ds

]α
,

[ ∫ t

0

AN(t− s)r(s, qs)ds

]α)
+ d̄

([∫ t

0

N(t− s)F (s, ps)ds

]α
,

[ ∫ t

0

N(t− s)F (s, qs)ds

]α)
+ d̄

([ ∑
0<ti<t

C(t− ti)I
′

i(pti)

]α
,

[ ∑
0<ti<t

C(t− ti)I
′

i(qti)

]α)
≤ dgd̄([p(t+Θ)]α, [q(t+Θ)]α)

+m0m1

∫ t

0

dgd̄([p(s+Θ)]α, [q(s+Θ)]α)ds

+m1

∫ t

0

df d̄([p(s+Θ)]α, [q(s+Θ)]α)ds+ did̄([p(t+Θ)]α, [q(t+Θ)]α)

Therefore,

b∞(E0p(t), E0q(t))

= sup
0<α≤1

d̄([E0p(t)]
α, [E0q(t)]

α)

≤ dg sup
0<α≤1

d̄([p(t+Θ)]α, [q(t+Θ)]α)

+m0m1

∫ t

0

dg sup
0<α≤1

d̄([p(s+Θ)]α, [q(s+Θ)]α)ds

+m1

∫ t

0

df sup
0<α≤1

d̄([p(s+Θ)]α, [q(s+Θ)]α)ds

+ sup
0<α≤1

did̄([p(t+Θ)]α, [q(t+Θ)]α)

Hence,

B
′
(E0p,E0q) = b∞(E0p(t), E0q(t))

≤ dgb∞([p(t+Θ)], [q(t+Θ)])

+m0m1dg

∫ t

0

b∞([p(s+Θ)], [q(s+Θ)])ds

+m1df

∫ t

0

b∞([p(s+Θ)], [q(s+Θ)])ds

+ dib∞([p(t+Θ)], [q(t+Θ)])

≤
(
m1(m0dg + df )T + dg + di

)
B

′
(p, q)
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From Hypothesis (H5), E0 is a contraction. Therefore, by fixed point theorem
due to Banach, System (1)− (4) has a fuzzy solution which is unique.

4. Conclusion

In this paper, Banach fixed point theorem is employed to get the existence
results for impulsive fuzzy solutions for abstract partial neutral functional dif-
ferential equations. The existence theorem of solutions in the metric space of
normal fuzzy convex sets with distance given by the maximum of the Hausdorff
distance between level sets is also obtained using alpha cut ideas. Sufficient
conditions are also determined to get the desired result. One can extend the
same findings to study the controllability nature of the above systems by ap-
plying suitable fixed point theorem. Existence, uniqueness and controllability of
fuzzy solutions of an of fractional impulsive abstract partial neutral functional
differential equations will be the future work for the researchers in the field.
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