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MOSAICFUSION: MERGING MODALITIES WITH PARTIAL

DIFFERENTIAL EQUATION AND DISCRETE COSINE

TRANSFORMATION
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Abstract. In the pursuit of enhancing image fusion techniques, this re-
search presents a novel approach for fusing multimodal images, specifically

infrared (IR) and visible (VIS) images, utilizing a combination of partial
differential equations (PDE) and discrete cosine transformation (DCT).

The proposed method seeks to leverage the thermal and structural infor-

mation provided by IR imaging and the fine-grained details offered by VIS
imaging create composite images that are superior in quality and informa-

tiveness. Through a meticulous fusion process, which involves PDE-guided

fusion, DCT component selection, and weighted combination, the method-
ology aims to strike a balance that optimally preserves essential features

and minimizes artifacts. Rigorous evaluations, both objective and sub-

jective, are conducted to validate the effectiveness of the approach. This
research contributes to the ongoing advancement of multimodal image fu-

sion, addressing applications in fields like medical imaging, surveillance,

and remote sensing, where the marriage of IR and VIS data is of para-
mount importance.
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1. Introduction

The fusion of infrared (IR) and visible (VIS) images has emerged as a pow-
erful and transformative technique in the realm of image processing, computer
vision, and remote sensing[1, 2]. The synergy between these two distinct imag-
ing modalities, each preprocessing its unique set of advantages and limitations,
opens doors to a wide range of applications with significant societal and tech-
nological implications. Infrared imaging captures the thermal radiation emitted
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by objects, enabling the detection of temperature variations and objects in total
darkness or adverse weather conditions. Visible imaging, on the other hand,
records the electromagnetic spectrum within the range of human vision and is
adept at capturing fine details, colors, and textures. By combining these modal-
ities, multi-modal image fusion aims to create composite images that inherit the
strengths of both while mitigating their respective weaknesses[3]. The motiva-
tion behind fusing IR and VIS images is manifold. In the domain of surveillance
and security, the fusion enhances object detection and recognition, enabling
the identification of threats, intruders, or objects of interest even in low-light
conditions[4]. In medical imaging, multi-modal fusion can aid in the diagnosis
of diseases by providing complementary information for tissue characterization
and assessment[5].

The fusion process itself is a multifaceted challenge, involving the integration
of pixel-level information from IR and VIS sources. It necessitates a careful
balance between retaining the essential structural and thermal details from the
IR modality and the fine-grained visual cues from the VIS modality. Achieving
this balance while minimizing artifacts and noise is a non-trivial task, leading
to the development of innovative fusion methods and algorithms.

This research endeavors to contribute to the evolving field of multi-modal
image fusion by proposing a fusion methodology that harnesses the potential of
differential equations and discrete transformation to optimally combine IR and
VIS images. The proposed approach aims to create fused images that enhance
the overall quality, informativeness, and applicability of the composite data,
making strides towards improved decision-making and understanding in domains
where IR and VIS data intersect In this paper, we present the details of our
fusion methodology, including the principles, parameters, and processes involved.
We also provide comprehensive evaluations, both objective and subjective, to
validate the efficacy of our approach. The outcomes of this research not only
have the potential to advance the state of the art in multi-modal image fusion
but also stand to benefit numerous fields where the marriage of IR and VIS
imaging is a vital component in addressing contemporary challenges.

2. Litrature Review

Multi-modal image fusion, particularly the fusion of infrared (IR) and visi-
ble (VIS) images, has emerged as a transformative technique with far-reaching
applications. This review provides an overview of the key developments and
methodologies in IR and VIS image fusion which offers an attractive proposition
due to the complementary nature of these two modalities. IR imaging excels
in capturing thermal radiation, making it effective in low-light conditions and
adverse weather. On the other hand, VIS imaging offers high-resolution, color-
rich details. By combining these modalities, multi-modal fusion aims to create
composite images that harness the strengths of both, surpassing the limitations
of individual modalities[6, 7].
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Early approaches to multi-modal image fusion involved traditional methods,
including simple pixel-level averaging and weighted averaging. While these tech-
niques provided fundamental insights into fusion principles, they often struggled
to preserve vital details and eliminate noise. As technology advanced, spatial do-
main fusion methods gained prominence. Techniques such as wavelet transform
and Laplacian pyramids allowed for the extraction and combination of informa-
tion at different scales, improving fusion results and detail preservation[8, 9].In
the quest for more robust fusion methods, frequency domain approaches came
to the fore. Discrete Fourier transform (DFT)[10] and discrete cosine transfor-
mation (DCT) have been employed to analyze and fuse images in the frequency
domain[11, 12]. These methods excel in the selection of dominant frequency
components and the subsequent combination of information.

Recent years have witnessed a shift towards advanced fusion techniques, in-
cluding the integration of deep learning-based approaches. Convolutional neu-
ral networks (CNNs) and generative adversarial networks (GANs) have shown
promise in automating the fusion process, learning representations, and opti-
mizing fusion performance[13, 14]. Applications of IR and VIS image fusion
are extensive. In the medical field, fusion has found applications in disease di-
agnosis, tissue characterization, and surgical navigation, ultimately leading to
more accurate clinical assessments and improved patient outcomes. In remote
sensing and surveillance, the fusion enhances object detection and recognition,
contributing to improved situational awareness and decision-making in complex
environments challenges in multimodal image fusion include the selection of an
optimal fusion method, the choice of fusion parameters, and the fine-tuning of
fusion algorithms. Future research directions encompass the integration of real-
time processing, the development of domain-specific fusion methods, and user-
centric optimization for diverse applications. This research contributes to the
advancement of multi-modal image fusion by proposing a novel methodology that
harnesses differential equations and discrete cosine transformation to optimally
combine IR and VIS images. The goal is to create fused images that enhance
overall quality, informativeness, and applicability, thereby addressing contem-
porary challenges and fostering improved decision-making and understanding in
domains where IR and VIS data converge.

3. Fusion Approaches in Multi-modal Image Fusion

In multi-modal image fusion, various approaches are employed to combine
information from different sources. These approaches can be broadly catego-
rized into spatial domain fusion, frequency domain fusion, and hybrid fusion
methods. Each approach has its advantages and is selected based on the specific
requirements of the fusion task.

3.1. Spatial Domain Fusion. Spatial domain fusion involves traditional
methods based on pixel-level operations. One of the fundamental techniques
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in this domain is the Non-Subsampled Shearlet Transform (NSST). Spatial do-
main fusion methods focus on capturing spatial structures and relationships
within images. The Non-Subsampled Shearlet Transform (NSST) is a power-
ful tool for spatial domain fusion, particularly when the preservation of spatial
structures, textures, and directional information is crucial[15, 16, 17].

NSST represents an image I as a linear combination of shearlet coefficients
at various scales and orientations. Each shearlet coefficient encapsulates specific
spatial frequencies and directions within the image. Mathematically, NSST can
be expressed as:

I(x, y) =

J∑
j=1

Lj∑
l=1

Kj∑
k=1

sj(k, l) · ψj,k,l(x, y) (1)

In equation (1), I(x, y) represents the pixel value of the image at coordinates
(x, y), J denotes the number of scales, Lj is the count of shearlets at scale j, Kj

is the count of shearlets at each scale j, sj(k, l) denotes the shearlet coefficients,
ψj,k,l(x, y) is the shearlet basis function.

In the context of spatial domain fusion, NSST can be applied to the input
images to extract their spatial and directional components. These components
can then be fused to create a new image that encapsulates essential features
from each modality. The fusion process using NSST is defined as:

FNSST(x, y) =

J∑
j=1

Lj∑
l=1

Kj∑
k=1

αj,k,l · sj,k,l (2)

Where in equation (2), FNSST(x, y) represents the pixel value of the fused
image, αj,k,l denotes fusion weights determined based on the shearlet coefficients,
sj,k,l are shearlet coefficients obtained from the NSST of the input images.

3.2. Frequency Domain Fusion. utilize techniques like the Discrete Wavelet
Transform (DWT) to analyze the frequency components of images. DWT is
a powerful tool in this context, as it decomposes an image into wavelet co-
efficients at different scales and positions, enabling selective fusion based on
frequency characteristics.DWT is a widely adopted technique in frequency do-
main fusion. It decomposes an image into wavelet coefficients at multiple scales
and positions[18, 19, 20, 21, 22]. The DWT of an image can be mathematically
represented as.

DWT (I) = LLJ ⊕ LHJ ⊕HLJ ⊕HHJ ⊕ . . .⊕ LH1 ⊕HL1 ⊕HH1 (3)

Here in equation (3), DWT (I) represents the DWT coefficients of the input
image I, LLJ is the approximation at the finest scale, LHJ , HLJ , and HHJ

represent horizontal, vertical, and diagonal details at the finest scale, Subscripts
from J to 1 indicate different scales, with J being the finest scale.
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In frequency domain fusion, DWT coefficients are utilized to capture fre-
quency information from the input images. The fusion process combines coef-
ficients from various scales and orientations to create the fused image which is
expressed below.

FDWT(x, y) =

J∑
j=1

∑
d∈{LL,LH,HL,HH}

αj,d ·DWT (Ij,d)(x, y) (4)

In equation (4),FDWT(x, y) represents the pixel value of the fused image,
Ij,d(x, y) denotes the DWT coefficient at scale j and direction d, αj,d are fusion
weights determined based on the DWT coefficients.

3.3. Hybrid Fusion. Hybrid fusion methods combine both spatial and fre-
quency domain techniques to exploit the strengths of both domains. These meth-
ods leverage the complementary nature of spatial and frequency information[23].
The fusion equation for hybrid fusion can be defined as:

Fhybrid(x, y) = α · Fspatial(x, y) + (1− α) · Ffrequency(x, y) (5)

Here, Fhybrid(x, y) represents the fused pixel value, Fspatial(x, y) and
Ffrequency(x, y) are the results obtained from spatial and frequency domain fu-
sion, and α is the fusion weight. Hybrid fusion methods aim to combine the
advantages of both domains to enhance the overall fusion quality.

Figure 1. Process Flow of Mosaic Fusion

4. Proposed Hybrid Fusion Method(Mosaic Fusion)

This section provides a comprehensive overview of the proposed method (Mo-
saic Fusion) intended to overcome the challenges inherent in multi-modal image
fusion. section offers a detailed, step-by-step explanation of the entire fusion pro-
cess, starting from the preprocessing to the weighted fusion of results based on
differential equations and Discrete Cosine Transform (DCT), which will be clar-
ified using mathematical equations, algorithmic descriptions, and insights into
the fundamental principles. The resultant fused image consolidates informa-
tion from the input modalities, effectively addressing the research problem and
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enriching our understanding of the subject matter. This introductory overview
lays the groundwork for a comprehensive explanation of the entire fusion process,
highlighting the significance of each step.

4.1. Image preprocessing. Before the fusion process, the multi-modal images
undergo prepossessing to ensure consistency and quality. The following steps are
performed:

4.1.1. Image Registration. If the input images are not aligned spatially, a
registration process is applied to bring them into a common coordinate system.
Image registration is essential to ensure that corresponding features in both
modalities are accurately aligned. Two input images are denoted as I1(x, y)
and I2(x, y) where x and y are the spatial coordinates. The goal is to find a
transformation function T that maps the coordinates of I2 to match those of I1
so that corresponding features are accurately aligned. The registration process
is expressed as:

I ′2(x, y) = I2
(
T (x, y)

)
(6)

where ,I ′2(x, y) represents the registered version of original unregistered image
I2(x, y), and T (x, y) is given by

T (x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
+

[
∆x
∆y

]
in this θ represents the rotation angle,∆x and ∆y the translation parameters.

4.1.2. Normalization. This step ensures that pixel intensities have similar
ranges, making them more amenable to fusion by Scaling the pixel values to
a common range, such as [0, 1] is a crucial step in image processing which
is important for accurate fusion and the preservation of image features across
different modalities. Mathematically, the normalization of each pixel value in an
image I(x, y) is shown below.

Inormalized(x, y) =
I(x, y)−min(I)

max(I)−min(I)
(7)

Here, Inormalized(x, y) represents the normalized pixel value at coordinates
(x, y) in the image I. min(I) and max(I) are the minimum and maximum pixel
values in the image I.

4.2. Partial Differential Equation - Based Fusion. The fusion problem is
represented as a set of partial differential equations [24, 25, 26]. These equations
capture the relationships between pixel intensities from different modalities, con-
sidering spatial variations and structural information as shown below.

∂U

∂t
= ∇ ·

(
c(x, y, t)∇U

)
(8)
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Here, U represents the fused image, ∇ is the gradient operator, and c(x, y, t)
is the diffusion coefficient. To solve this equation numerically using finite differ-
ences, it can discretize it in both time (t) and space (x, y) by forming the basis
for the numerical solution of the differential equations using finite differences[27].
First, it divides the continuous time interval into discrete time steps. Let ∆t be
the time step. The time derivative is then approximated as:

∂U

∂t
≈ Un+1 − Un

∆t
(9)

Here, Un+1 represents the value of the fused image at the next time step, and
Un represents the current time step.

Secondly, it divides the spatial domain (the pixel grid) into discrete grid
points. Let ∆x and ∆y be the grid spacing in the x and y directions, respec-
tively. The spatial derivatives are approximated using finite differences in the x
direction and the y direction: respectively are shown in the following equation.

∂

∂x
≈ U(i+ 1, j)− U(i− 1, j)

2∆x
and

∂

∂y
≈ U(i, j + 1)− U(i, j − 1)

2∆y
(10)

From equation (8) and equation (9), a differential equation can be written in
its discrete form by Combining Temporal and Spatial Discretizations as

Un+1 − Un

∆t
= ∇ · (c(x, y, t)∇U) (11)

Un+1 = Un +∆t∇ · (c(x, y, t)∇U) (12)

The above equation shown in represents the iterative update to obtain the
fused image at the next time step, denoted as Un+1 which is solved for by
iteratively updating Un using the discrete spatial representation and the partial
differential equation governing the fusion process.

4.2.1. Discrete Cosine Transform (DCT). The numerical solution of the
differential equations guides the fusion process. It helps in preserving essential
features while reducing noise and artifacts. The fusion is performed iteratively
to optimize the results.

The Discrete Cosine Transform (DCT) is a fundamental mathematical tool
widely used in digital image processing. Known for its efficient energy com-
paction characteristics, the DCT effectively concentrates most of its larger coef-
ficients in the low-frequency range [28, 29, 30]. The DCT is formally defined by
[29] as follows:

Img (p, q) = α (p) α (q)

m−1∑
x=0

n−1∑
y=0

Img (x, y) cos

(
π (2x+ 1)p

2m

)
cos

(
π (2y + 1)q

2n

)
(13)

Here, the discrete frequency variables p ∈ [0,m− 1] and q ∈ [0, n− 1] represent
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the indices of the (x, y) pixels within the image. The coefficients α(p) and α(q)
are defined as:

α(p) =


1√
m
, p = 0√
2
m , 1 ≤ p ≤ m− 1

(14)

α(q) =


1√
n
, q = 0√
2
n , 1 ≤ q ≤ n− 1

(15)

The basis functions of the DCT used as a foundation, represent the weights
applied to each function. Visualizing these basis functions, a typical matrix size
of 8× 8 employs 64 basic functions, as shown in Figure 1.

Figure 2. The 64 Basis Functions of an 8× 8 Matrix.

In an n × n matrix representing a two-dimensional image or signal, frequen-
cies progress vertically from top to bottom and horizontally from left to right.
The basis function located at the top left, distinguished by a constant value, is
commonly referred to as the DC (Discrete Cosine) basis function. Similarly, the
DCT coefficient Img(0, 0) is often termed the DC coefficient.

4.2.2. Frequency Domain Transformation and Component Selection.
Utilizing Equation (12), the process of fusing the dominant frequency com-
ponents selected from both modalities involves employing the Discrete Cosine
Transform (DCT). The outcome of this fusion, termed as Uf , emerges from the
amalgamation of these dominant components, thereby expressing images in the
context of spatial frequency components. The procedure entails the selection
of these dominant frequency components through a comparison of each coeffi-
cient’s magnitude with a predetermined threshold. Coefficients with magnitudes
exceeding the threshold are deemed dominant and contribute to the fusion pro-
cess.
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For each Modality:

|(u, v)|D =

{
|(u, v)|F , if |(u, v)|F ≥ T

0, otherwise
(16)

The matrices [|(u, v)|D] now contain the dominant frequency components for
each modality. These components are retained for the fusion process, while the
less informative components (those below the threshold) are set to zero.

4.3. Weighted Fusion and Weighting Strategies. The selected DCT co-
efficients from Modality 1, |(u, v)|D1, and Modality 2,|(u, v)|D2, are combined
using a weighted approach:

|(u, v)|F = w1 · |(u, v)|D1 + w2 · |(u, v)|D2 (17)

Here, Uf (u, v) represents the fused image, and w1 and w2 are the weights that
determine the contribution of Modality 1(IR) and Modality 2(VIS) to the fused
image.

A weighted fusion scheme is applied to combine the results from the PDE-
based fusion and the DCT-based component selection. The fused DCT coeffi-
cients, denoted as Ffused(u, v), are obtained using the following weighted combi-
nation:

Ffused(u, v) = α · FPDE(u, v) + (1− α) · FDCT(u, v) (18)

Where, Ffused(u, v) is the fused DCT coefficients,FPDE(u, v) is the DCT co-
efficients from the differential equation-based fusion, FDCT(u, v) is the DCT
coefficients from DCT component selection, α is the fusion weight.

5. Experiments and Results

In our experimental evaluations, we extensively tested our hybrid image fusion
technique(Mosaic Fusion) using MATLAB R2021a on a system powered by an
Intel i7 processor, operating at 144 Hz, and with 16 GB of RAM. The purpose of
these simulations was to thoroughly assess the efficacy of our proposed approach.
It’s important to note that all images used in these experiments were in grayscale,
and the source images can be referenced in [31, 32].

Our assessment involved a comparative analysis of our Mosaic method against
established fusion techniques, including Non-Subsampled Shearlet Transform
(NSST), Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT)
[34], and Fourth-Order Partial Differential Equations (FPDE) [33]. We con-
ducted both quantitative and qualitative analyses to discern and compare the
strengths and limitations of these fusion methods. A series of experiments were
conducted to evaluate our proposed methodology for multimodal image fusion,
integrating partial differential equations (PDE) and discrete cosine transforma-
tion (DCT). This section outlines the critical components and setup used in
these experimental assessments.”
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5.1. Parametric Settings. This section delineates the critical parameters
and configurations employed in our approach to multimodal image fusion. These
settings play a pivotal role in shaping the behavior and performance of the fusion
algorithm, ensuring optimal outcomes and reproducibility for future reference.

To achieve spatial alignment of input modalities, we performed image reg-
istration using a rigid transformation model, allowing a maximum registration
error of 0.5 pixels. To ensure pixel intensity consistency across modalities, we
applied min-max scaling normalization, thereby transforming pixel intensities
within the input modalities into the range [0, 1]. This normalization process
aimed to standardize intensities for effective fusion. Employing a first-order par-
tial differential equation (PDE) as per Equation (8) for the fusion process, we
utilized a finite differences numerical scheme to solve these PDEs efficiently. A
time step of ∆t = 0.01 seconds was selected to maintain numerical stability.
For the Discrete Cosine Transform (DCT) configuration, a block size of 8 × 8
pixels was found to be effective in capturing relevant frequency components.
We applied a threshold (T = 0.1) to select DCT components, retaining those
with magnitudes surpassing this value for fusion. The fusion process adopted
a weighted sum approach, assigning a weight of 0.6 to the PDE-guided fusion
result and a combined weight of 0.4 to the DCT components. This weighting
scheme was determined through a sensitivity analysis aimed at enhancing fusion
performance.

5.2. Objective Evaluation. In the realm of image processing and quality
assessment, four widely utilized metrics for evaluating the quality of fused im-
ages are the Normalized Mutual Information (NMI), Root Mean Square Error
(RMSE), Peak Signal-to-Noise Ratio (PSNR), and visual assessments by experts.

Normalized Mutual Information (NMI) can be expressed by considering
two random variablesX and Y , and their joint distribution p(X,Y ). The mutual
information (MI) between X and Y is given by,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x) · p(y)
p(x, y)

)
(19)

Where, - I(X;Y ) is the mutual information between X and Y ,p(x, y) is the
joint probability distribution of X and Y ,p(x) and p(y) are the marginal prob-
ability distributions of X and Y , respectively.The individual entropies of X and
Y are given by,

H(X) = −
∑
x∈X

p(x) log p(x) (20)

H(Y ) = −
∑
y∈Y

p(y) log p(y) (21)

The NMI between X and Y is calculated as the normalized mutual informa-
tion, taking into account their individual entropies:
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NMI(X;Y ) =
I(X;Y )√

H(X) ·H(Y )
(22)

NMI ranges from 0 to 1, where 0 indicates no mutual information (no simi-
larity) between X and Y , and 1 represents perfect mutual information (perfect
similarity). In the context of image fusion, NMI can be used to evaluate the
similarity between the fused image and the input modalities. A higher NMI
value indicates a stronger agreement or similarity between the fused image and
the original images, suggesting that the fusion process has effectively preserved
the information from the input modalities.

Root Mean Square Error (RMSE) is a measure of the average magnitude
of the errors between the pixels of the fused image and a reference image. It
quantifies the square root of the average of the squared differences between the
corresponding pixels of the two images. RMSE is defined as:

RMSE =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(Ifused(i, j)− Iref(i, j))2 (23)

Where, Ifused(i, j) is the pixel value in the fused image at coordinates (i, j),
Iref(i, j) is the pixel value in the reference image at the same coordinates, M
and N are the dimensions of the images.

RMSE is a measure of the discrepancy between the fused image and the
reference image, where lower RMSE values indicate higher similarity.

Peak Signal-to-Noise Ratio (PSNR)measures the ratio of the peak signal
power to the power of the noise, expressed in decibels (dB). PSNR is defined as,

PSNR = 10 · log10
(

MAX2

RMSE2

)
(24)

Where, MAX is the maximum possible pixel value (e.g., 255 for 8-bit images),
RMSE is the Root Mean Square Error.

PSNR quantifies the quality of the fused image by considering the magnitude
of errors in relation to the maximum possible pixel value. Higher PSNR values
indicate higher image quality and fidelity.

Table 1 presents a comparative performance evaluation of various fusion meth-
ods applied to multi-modal images across different assessment metrics and di-
verse image scenes. The assessment metrics include Normalized Mutual Infor-
mation (NMI), Root Mean Squared Error (RMSE), Peak Signal-to-Noise Ra-
tio (PSNR) in decibels, and Visual Assessment on a scale from 1 to 10. For
the ’Soldier with Jeep’ image, the Fourth-Order Partial Differential Equations
(FPDE) method outperformed others, achieving the highest NMI score (0.725)
and the second-highest Visual Assessment score (8.0), signifying superior in-
formation preservation and visual fidelity. Conversely, the Mosaic Approach
showcased relatively lower performance in NMI (0.782) but excelled in RMSE
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Table 1. Performance Comparison of Multi-Modal Images
with Five Fusion Methods

Methods DCT DWT NSST FPDE Mosaic Approach

NMI Score 0.572 0.521 0.621 0.725 0.682
RMSE Score 0.074 0.063 0.057 0.065 0.031
PSNR (dB) 60.947 60.122 60.930 60.470 60.824
Visual Assessment (Scale 1- 10) 6.0 6.8 7.2 8.0 8.5

Soldier with Jeep
NMI Score 0.377 0.157 0.877 0.852 0.796
RMSE Score 0.093 0.104 0.125 0.011 0.045
PSNR (dB) 57.178 58.432 58.439 57.616 57.924
Visual Assessment (Scale 1- 10) 6.8 7.3 6.8 8.5 8.4

Tank
NMI Score 0.457 0.357 0.852 0.843 0.956
RMSE Score 0.073 0.112 0.067 0.0782 0.057
PSNR (dB) 56.878 58.457 59.679 58.553 58.610
Visual Assessment (Scale 1- 10) 5 6.3 6.8 7.5 8.0

Gun

(0.045) and Visual Assessment score (8.5), highlighting the accuracy of pixel-
wise predictions.In the ’Tank’ image evaluation, the Non-Subsampled Shearlet
Transform (NSST) method exhibited the highest NMI score (0.877), indicating
strong preservation of mutual information between the modalities. However, the
Mosaic Approach scored highest in Visual Assessment (8.0), suggesting better
performance in maintaining visual quality. For the ’Gun’ image, the Mosaic
method demonstrated relatively higher NMI scores (0.956) than all the other
methods, also achieving a remarkable Visual Assessment score (8.0) and higher
PSNR (58.610). The results emphasize the varying capabilities of each fusion
method across different scenes, with each method displaying distinct strengths
and weaknesses. This underscores the importance of selecting the appropriate
fusion method based on specific image characteristics and intended application.

5.2.1. Visual Quality Comparison. Visual quality comparisons were made
using the ”Soldier with Jeep,” ”Man with Gun,” and ”Tank” datasets, each
consisting of IR and VI source images and fused images generated by various
fusion methods. The visual comparison results are depicted in Figures 3 to 5.

In this comparative analysis, we contrast our proposed approach against the
aforementioned four techniques, evaluating their respective assessment indica-
tors. Table 1 summarizes the optimal results for the five assessment metrics
obtained by these methods, highlighting the effectiveness of our proposed tech-
nique in handling source images across three distinct datasets. Our approach
consistently outperforms the others across multiple parameters, producing fused
images with reduced artifacts and noise, while enhancing detail and texture char-
acteristics. The visual appeal of the composite images is notably improved. In
essence, our proposed method significantly enhances human visual perception
by effectively extracting and preserving fine details and texture elements from
the source images at an optimal scale. These assessment metrics further ensure
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Figure 3. Solider with Jeep

Figure 4. Tank

Figure 5. Man with gun

the suitability of our fusion results for detailed observation and detection pur-
poses. Figure 3 vividly illustrates that our developed method produces merged
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images with improved discernibility, contrast, and brightness. Our technique
adeptly retains essential edges and crucial data while minimizing fusion arti-
facts and loss. Notably, our approach effectively eliminates block effects and
artifacts while successfully restoring original textures. Compared to the other
four methods, NSSCT images appear considerably blurry, lacking texture and
sharpness. Similarly, some areas in the three combined DWT images exhibit
a loss of texture and sharpness. FPDE-fused images, particularly in Figures 4
and 5, exhibit increased artificial noise and indistinct features, often appearing
darker and lacking certain prominent elements. The Mosaic approach generates
images with exaggerated infrared features and excessive brightness, leading to
an unnatural viewing experience, as evident in Figure 3. Trustingly, our fu-
sion approach expertly retains a greater amount of detail and texture from the
source images compared to the other methods, resulting in clearer images that
are well-suited for human vision.

Figure 6. Average Evaluation Scores of Different Fusion
Methods

Figure 6 illustrates the average evaluation scores of five different fusion meth-
ods—Mosaic, DCT, DWT, NSST, and FPDE—across fifteen pairs of images.
The metrics evaluated in this chart include SSIM (Structural Similarity Index),
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PSNR (Peak Signal-to-Noise Ratio) in decibels, NMI (Normalized Mutual In-
formation), and Visual Assessment scores. Each method’s performance is repre-
sented by these metrics, where higher scores indicate better results. This com-
parison provides insights into the varying performance levels of each method
across multiple evaluation criteria.

6. Conclusion and Future scope

In conclusion, this study has presented a novel approach that departs from the
conventional separation of feature extraction, fusion, and reconstruction stages
in image processing. Instead, our proposed strategy offers an integrated and op-
timized framework where these three stages are considered simultaneously. This
holistic approach not only enhances the interconnectedness of processes but also
bolsters the overall method’s stability. Moving forward, there are several promis-
ing avenues for future research in this domain. Firstly, the development of more
advanced loss functions tailored to specific applications could further improve fu-
sion quality and information transfer. Additionally, exploring the integration of
emerging technologies like deep reinforcement learning or generative adversarial
networks (GANs) into the proposed framework may yield even more impressive
results. Furthermore, investigations into real-time implementation and scalabil-
ity to handle large datasets or high-resolution images could expand the practical
applicability of this approach. Lastly, there is potential for exploring appli-
cations beyond image fusion, such as in video processing, medical imaging, or
remote sensing, where this integrated approach may offer substantial benefits. In
conclusion, while this study has presented a comprehensive framework, the field
of image processing continues to evolve, offering numerous exciting prospects
for future research and development. These possibilities hold the potential to
further advance the capabilities of image fusion techniques and their broader
applications.
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