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A MATHEMATICAL MODEL OF HEAT EMISSION ON

THE EPIDERMIS OF A HUMAN BODY

Hee Chul Pak*

Abstract. We develop a mathematical model of heat emission
on the epidermis of a human body. We present a global existence
theorem of solutions for a nonlinear model system of coupled partial
differential equations.

1. Introduction

Methods of mathematical modeling of heat-exchange processes in the
human body are used in various problems in the fields of medicine,
physiology, athletics, the garment industry, and in the design of survival
systems.

The aim of this paper is to construct an appropriate model to explain
movements of body temperature on the epidermis of the human body.

Heat-exchange process models have been studied in a large scale since
the 1940s. In recent years, with the development of modern computa-
tional techniques and the more detailed physiological information avail-
able, the mathematical models have become more refined and more com-
plex. With the help of modern theoretical and applicable mathematical
technique, complex models can be worked out taking into account the
anatomical structure of the body, different heat-transport mechanisms,
and the effect of the thermoregulatory system.

This paper presents a new approach to construct a thermodynamic
model of the human body as an open system under steady state condi-
tions, correlated with the effect of deep body influence on the heat fluxes
at the shell surface (skin). This explains the heat-transfer processes from
the inner layer to the epidermis of the human body.
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2. Derivation of a model of heat emission on the epidermis

Normal human body temperature, also known as normothermia or
euthermia, is a concept that depends upon the place in the body at
which the measurement is made, and the time of day and level of activity
of the person.

The body’s extremities are colder than the body core. The time of
day and other circumstances also affect on the body’s temperature. For
example, the core body temperature of an individual tends to have the
lowest value in the second half of the sleep cycle. The lowest point (called
nadir) is known as one of the primary markers for circadian rhythms.
The body temperature also changes when a person is hungry, sleepy,
or cold. Body temperature can be normally affected by such things
as extreme physical activity, ovulation and pregnancy in women, and
smoking. There is no single number that represents a normal or healthy
temperature for all people under all circumstances using any place of
measurement. Let us say that a distributional measurement ρ represents
in direct proportion to the body temperature, and m is a distributional
measurement inverse proportional to the body temperature. For our
analysis, we do not specify the exact factors of ρ and m.

Let Ωλ be a dermis part of human body with thickness λ > 0. The
dermis Ωλ is bonded along the top by a very thin layer, so called,
epidermis layer, and the skin S is the surface of the epidermis layer.
We assume that S is flat, bounded open subset of 2 dimensional plane
that can be considered as the xy-plane, and we will denote its points
by x̃ ≡ (x1, x2) ∈ S. We also assume that the 3 dimensional subset
Ωλ is a cylindrical region Ωλ = S × (−λ, 0), and denote its points by
x ≡ (x1, x2, x3) ∈ Ωλ. Since the real body skin is locally diffeomorphic
to S, the constraints for S and Ωλ are not artificial for the study on the
emission of body temperature. The region Ωλ is a good heat transfer of
conductivity

kρ

λ2m
,

where k is a proportional constant and we presume the heat conductivity
is in inverse proportion to the square of the thickness λ.

The heat is transferred mainly through the skin pores S1 of the skin
surface S. In fact, the skin S is divided into two sub-regions, S1, S2

where the sub-region S2 is assumed to be smooth, and the pores S1

are isolated. Due to the λ-scaling of the thickness, the epidermis layer
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bonded along the top of the dermis layer Ωλ has a (vertical) heat-
resistance λ r to a layer in S1. The skin layer S has the horizontal
heat field (flux) λσ and the (horizontal) heat-resistance λR.

Let u(x, t) denote the temperature distribution in Ωλ and v̄(x̃, t) the
temperature at the point x̃ and time t that goes across S1. There is no
temperature exchanging on S2, so we put v̄(x̃, t) = 0 for x̃ ∈ S̄2 − this
only means that the swapping temperature between the dermis layer Ωλ

and skin S2 is null, however, it does not mean that the temperature on
S2 is zero. The temperature on S is not reflected in v̄(x̃, t)(Remark 2.1).

The changing of storage temperature amount in time with respect to
v̄ is 1

λ
∂
∂tC, and so C is a function of v̄, that is, C(v̄). We observe that

∂

∂t
C(v̄) = C ′(v̄)

∂

∂t
v̄,

where C ′(v̄) denotes the specific heat at the temperature, called the
heat-capacitance, and C ′(v̄) is a positive quantity. It follows that the
corresponding function C(·) is monotone. Also it is natural to say that

the heat-flux σ depends on the amount of the field ∇̃v̄. The dependence
on v̄ for C and on ∇̃v̄ for σ delivers the nonlinearities of the system.

In summary, we have the following system of equations :

−∇· kρ

λ2m
∇u(x, t) = 0, x ∈ Ωλ,

kρ

λ2m

∂u

∂x3
=


1
λf(x̃, t), x3 = λ, x̃ ∈ S,

1
ru, x3 = 0, x̃ ∈ S2,

1
λr (u− v̄), x3 = 0, x̃ ∈ S1,

u = 0 on ∂S×(−λ, 0),

1

λ

∂

∂t
C(v̄)− ∇̃· λσ(x̃, ∇̃v̄) +

1

λr
(v̄ − u) +

1

λR
v̄ = g, x̃ ∈ S1, x3 = 0,

v̄ = 0 on ∂S1,

where f and g are the given external forces on the bottom and the top
surfaces. The measurable function ρ, m are assumed to be bounded.

Remark 2.1. 1. We can say that skin is a closed 2-manifold with-
out boundary, and the part ∂S × (−λ, 0) of the boundary is empty.
The Dirichlet boundary condition on ∂S × (−λ, 0) means that no heat-
exchange through ∂S × (−λ, 0) is assumed.

2. The temperature component, say v̂(x̃, t), on S which is not af-
fected by the heat from skin pores is reflected in the function g(x̃, t), for
example, as in a heat equation g(x̃, t) = ∂

∂t v̂(x̃, t)−∆v̂(x̃, t).
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3. Mathematical analysis: weak formulation

First, we rescale the vertical axis. For it, let Ω1 = Ω and we employ
a change of variables x3 ≡ λz, ∂

∂z = λ ∂
∂x3

to get

−∇̃· kρ
m

∇̃u(x̃, z, t)− ∂

∂z

kρ

λ2m

∂

∂z
u(x̃, z, t) = 0, (x̃, z) ∈ Ω1(3.1)

kρ

λ2m

∂u

∂x3
=


f(x̃, t) on S × {−1},
1
ru on S2 × {0},
1
r (u− v̄) on S1 × {0},

u = 0 on ∂S×(−1, 0),

∂

∂t
C(v̄)− ∇̃· λ2σ(x̃, ∇̃v̄) +

1

r
(v̄ − u) +

1

R
v̄ = g, on S1 × {0},(3.2)

v̄ = 0 on ∂S1

with appropriate initial and boundary conditions. Now the parameter
λ > 0 affects the geometry only through the skin pore array S1 at z = 0.
All additional effects are contained in the size of various coefficients in
the above system.

We put v := C(v̄) and let s be the inverse function of C−1, so that we
have v̄ = s(v). We assume that the continuously differentiable function
s increases the p− 1 order, that is to say, |s(τ)| ≤ c|τ |p−1 for all τ ∈ R.
We also impose an assumption that σ(x̃, ∇̃s(v)) = α(x̃, ∇̃v) for some
measurable function α : S × R2 → R2 which satisfies Leray-Lions type
conditions: that is, there are positive constants c1, c2 such that for all
ξ, η ∈ R2 and almost every x̃ ∈ S

α(x̃, ξ) · ξ ≥ c1|ξ|p,(3.3)

|α(x̃, ξ)| ≤ c2|ξ|p−1,(3.4)

(α(x̃, ξ)− α(x̃, η)) · (ξ − η) > 0 for ξ ̸= η.(3.5)

A fundamental example of the operator −∇̃·α(x̃, ∇̃u) is the p-Laplacian

−∆̃p u := −∇̃ · |∇̃u|p−2∇̃u. Then we have a semi-linear equation

∂

∂t
v − λ2∇̃· α(x̃, ∇̃v) +

1

r
{s(v)− u}+ 1

R
s(v) = g(x̃, t)(3.6)

from the equation (3.2).
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In order to obtain an appropriate weak formulation, we introduce two
function spaces,

V0 ≡ {u ∈ W 1,2(Ω) : u = 0 on ∂S×(−1, 0)},

V1 ≡ W 1,p
0 (S1) (p ≥ 2).

By the zero-extension to S2, we regard v ∈ W 1,p
0 (S1) as an element in

Lp(S). Then for ϕ ∈ V0, we multiply both sides of the equation (3.1) by
ϕ and integrate over Ω to obtain

−
∫
Ω
∇̃·kρ

m
∇̃u(x̃, z, t)ϕ(x̃, z)dx̃dz−

∫
Ω

∂

∂z

kρ

λ2m

∂

∂z
u(x̃, z, t)ϕ(x̃, z)dx̃dz = 0.

An application of Green’s theorem yields∫
Ω

kρ

m
∇̃u(x̃, z, t)·∇̃ϕ(x̃, z)dx̃dz−

∫ 0

−1

∫
∂S

kρ

m
(u(x̃, z, t) · ν)ϕ(x̃, z)dS(x̃)dz

+

∫
Ω

kρ

λ2m

∂

∂z
u(x̃, z, t)

∂

∂z
ϕ(x̃, z)dx̃dz −

∫
S

kρ

λ2m

∂

∂z
u(x̃, z, t)ϕ

∣∣∣∣z=1

z=0

dx̃ = 0,

where ν is the unit outward normal vector. The boundary conditions
show that this is equivalent to∫

Ω

kρ

m
∇̃u(x̃, z, t) · ∇̃ϕ(x̃, z)dx̃dz +

∫
Ω

kρ

λ2m

∂

∂z
u(x̃, z, t)

∂

∂z
ϕ(x̃, z)dx̃dz

+

∫
S

1

r
{u(x̃, 0, t)− s(v)(x̃, t)}ϕ(x̃, 0)dx̃ =

∫
S
f(x̃, t)ϕ(x̃, 1)dx̃.(3.7)

For φ ∈ V1, multiplying the two sides of the equation (3.6) by φ and
integrating over S show that∫

S1

∂v

∂t
φdx̃+ λ2

∫
S1

α(x̃, ∇̃v) · ∇̃φdx̃+

∫
S1

1

R
s(v)φdx̃

+

∫
S1

1

r
{s(v)− u(x̃, 0, t)}φdx̃ =

∫
S1

g(x̃, t)dx̃.(3.8)

Thus a solution of system (3.1), (3.6) satisfies u(t) ∈ V0, v(t) ∈ V1 for
0 < t < T , and (3.7), (3.8) hold for each ϕ ∈ V0, φ ∈ V1. Conversely, it
follows directly that an appropriately smooth solution of (3.7) and (3.8)
will satisfy the system (3.1), (3.6) above.

In order to more clearly display the structure of the equations (3.7)
and (3.8), we specify some notation. Define two forms a1, a2 as follows.
For u1, u2 ∈ V0,

a1(u1, u2) ≡
∫
Ω

(
kρ

m
∇̃u1 · ∇̃u2 +

kρ

λ2m

∂u1
∂z

∂u2
∂z

)
dx̃dz.
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This determines a family of linear operators A1 : V0 → V ′
0 by

A1u1(u2) ≡ a1(u1, u2), u1, u2 ∈ V0.

For v1, v2 ∈ V1,

a2(v1, v2) ≡
∫
S1

(
λ2α(x̃, ∇̃v1) · ∇̃v2 +

1

R
s(v1)v2

)
dx̃(3.9)

determines the family of nonlinear operators A2 : V1 → V ′
1 by

A2v1(v2) ≡ a2(v1, v2), v1, v2 ∈ V1.

We introduce operators for the “trace” at z = 0 and z = 1, respectively.
Define γ0 : V0 → L2(S), γ∗0 : L2(S) → V ′

0 (dual), γ1 : V0 → L2(S), and
γ∗1 : L2(S) → V ′

0 as follows:

γ0u(φ) ≡
∫
S
u(x̃, 0)φ(x̃)dx̃, γ∗0v(ϕ) ≡

∫
S
v(x̃)ϕ(x̃, 0)dx̃ = ⟨v, γ0ϕ⟩L2(S) ,

γ1u(φ) ≡
∫
S
u(x̃, 1)φ(x̃)dx̃, γ∗1f(ϕ) ≡

∫
S
f(x̃)ϕ(x̃, 1)dx̃ = ⟨f, γ1ϕ⟩Lp(S) .

Using these definitions we can rewrite the equations (3.7) and (3.8) in
the following forms.
Find u ∈ C([0, T ];V0) and v ∈ C([0, T ];V1) ∩ C1((0, T );Lp(S1)) :

u(t) ∈ V0 : A1u(t) +
1

r
γ∗0{γ0u(t)− s(v)(t)} = γ∗1(f(t)) in V ′

0(3.10)

v(t) ∈ V1 :
∂

∂t
v(t) +A2v(t) +

1

r
{s(v)(t)− γ0u(t)} = g in V ′

1(3.11)

with initial condition v(x̃, 0) = v0(x̃).
In the following section, we assume that inf{ρ(x),m(x) |x ∈ Ω} is a

positive real number. The notation X . Y means that X ≤ CY , where
C is a fixed but unspecified constant.

4. Existence theorem

First we notice that the family of linear operators A1 : V0 → V ′
0

is uniformly V0-coercive for 0 < λ ≤ 1. Indeed, using the generalized
Poincaré lemma in [6], we have for u ∈ V0,

A1u(u) ≥
∫
Ω

kρ

m
| ∇̃u |2 dx̃dz

≥ 1

2

∫
Ω

kρ

m

∣∣∣∇̃u
∣∣∣2 dx̃dz + 1

2

∫
Ω

kρ

m

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx̃dz & ∥u∥2V0
.
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Thus the linear operator

A1 +
1

r
γ∗0γ0 : V0 −→ V ′

0

is uniformly coercive. Hence for any γ∗1(f)+
1
rγ

∗
0 v̄ ∈ V ′

0, there is a unique
u(t) ∈ V0 satisfying the equation (3.10) by the Lax-Milgram Theorem.
Therefore the equation (3.10) is equivalent to

u =

(
A1 +

1

r
γ∗0γ0

)−1(
γ∗1(f) +

1

r
γ∗0s(v)

)
.(4.1)

Substituting (4.1) into equation (3.11), we get

∂v

∂t
+

{
1

r

(
s− γ0

(
A1+

1

r
γ∗0γ0

)−11

r
γ∗0s

)
+A2

}
v

=

{
1

r
γ0

(
A1+

1

r
γ∗0γ0

)−1

γ∗1

}
f + g in V ′

1.

We define a corresponding unbounded operator A : D(A) → Lq(S1),
1
p + 1

q = 1. The domain of A is D(A) ≡ {v ∈ V1 : Av ∈ Lq(S1)}, and it

is defined on this domain by

A ≡ 1

r

(
s− γ0

(
A1 +

1

r
γ∗0γ0

)−1 1

r
γ∗0s

)
+A2.

1. An application of Hölder’s inequality and the condition (3.4) yield∣∣∣∣∫
S1

α(x̃, ∇̃v(x̃)) · ∇̃ϕ(x̃) dx̃

∣∣∣∣ . ∫
S1

|∇̃v(x̃)|p−1|∇̃ϕ(x̃)| dx̃

. ∥∇̃v∥p−1
Lp ∥∇̃ϕ∥Lp

. ∥v∥p−1
W 1,p∥ϕ∥W 1,p

for v, ϕ ∈ V1. This implies that the nonlinear operator A2 : V1 → V ′
1 is

continuous.

2. Next, we explain that the operator A2 is monotone:

(A2u−A2v)(u− v) ≥ 0(4.2)

for all u, v ∈ V1. Clearly, the second term 1
Rs : V1 → V ′

1 of (3.9) is
monotone because s′(·) > 0. To clarify the monotonicity of the first
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term of (3.9), we can note that the condition (3.5) implies that

λ2
{
α(x̃, ∇̃u(x̃))−α(x̃, ∇̃v(x̃))

}
· ∇̃(u−v)(x̃) ≥ 0.(4.3)

Integrating both sides of (4.3) on S1 together with the monotonicity of
1
Rs, we can get the monotonicity of the operator A2.

3. Now, we verify that A2 is a coercive operator. The condition (3.3)
leads to

A2v(v) = λ2

∫
S1

α(x̃, ∇̃v) · ∇̃v dx̃+
1

R

∫
S1

s(v)v dx̃

&
∫
S1

|∇̃v(x̃)|pdx̃+ ∥v∥pLp & ∥v∥p
W 1,p .

4. From the fact that for any v, ϕ ∈ Lp(S1),∣∣∣∣∫
S1

s(v)(x̃)ϕ(x̃)dx̃

∣∣∣∣ . ∥v∥p−1
Lp ∥ϕ∥Lp ,

we notice that s : Lp(S1) → Lp(S1)
′ is continuous. Furthermore, by

virtue of the Sobolev imbedding theorem, we observe that s(v) ∈ L2(S1)
for any v ∈ V1.

5. From the fact that

γ0

(
A1+

1

r
γ∗0γ0

)−11

r
γ∗0 : L2(S1) → L2(S1)

is a contraction, we can notice that I − γ0
(
A1+

1
rγ

∗
0γ0
)−11

rγ
∗
0 is contin-

uous and monotone, where I represents the identity map. It follows

that the composition operator s − γ0
(
A1+

1
rγ

∗
0γ0
)−11

rγ
∗
0s is continuous

and monotone. Adding a positive multiple of this to A2 still retains a
monotonicity. This illustrates the m-accretivity of A.

6. Letting F ≡
{

1
rγ0

(
A1+

1
rγ

∗
0γ0
)−1

γ∗1

}
f+g, by virtue of the heuris-

tic existence theorem of nonlinear evolution equations(for example, see
page 122 in [6]), we notice that there exists the unique solution of initial
value problem

∂v

∂t
+A v = F

with v(0) = v0 ∈ L2(S1). Also, we can recover u(t) via (4.1). Thereby
we obtain:
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Theorem 4.1 (Existence of the solution u, v). There exists a solution
u ∈ L∞([0, T ];V0), v ∈ Lp([0, T ];V1) to the system (3.10) and (3.11).
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