• Title/Summary/Keyword: parametric vibration

Search Result 496, Processing Time 0.03 seconds

A Study of Industrial Robot for the Noise and the Vibration Reduction (산업용 로봇의 소음/진동 저감 연구)

  • Lee, Kwang-Yal;Chung, Jin-Tai;Jung, Du-Han;Yim, Heung-Soon;Kim, Young-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.146-151
    • /
    • 2002
  • The object of this study is an examination of source of robot noise and reduction of the noise and the vibration for an industrial robot system. As the first step in our study, the noise and the vibration from the robot are measured by microphones and by accelerometers and the source of the noise and the vibration are proved to be from the gear, shaft, and housing from the experiments. The occurrence of the noise may be classified according into kinds, Finally base on the result of the experiments, we consider a countermeasure for reducing the noise and the vibration of robot system by the parametric study.

  • PDF

A Study of Industrial Robot for the Noise and the Vibration Reduction (산업용 로봇의 소음/진동 저감 연구)

  • Lee, Kwangyal;Jintai Chung;Duhan Jung;Yim, Hueng-Soon;Kim, Young-Hwin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.321.1-321
    • /
    • 2002
  • The object of this study is an examination of source of robot noise and reduction of the noise and the vibration for an industrial robot system. As the frist step in our study, the noise and the vibration from the robot are measured by microphones and by accelerometers and the source of the noise and the vibration are proved to be from the gear, shaft, and housing from the experiments. The occurrence of the noise may be classified according into kinds, Finally base on the result of the experiments, we consider a countermeasure fur reducing the noise and the vibration of robot system by the parametric study.

  • PDF

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation (계수려진을 받는 단순지지 보의 비선형 진동특성)

  • Son, In-Soo;Yabuno, Hiroshi;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

A Study on the Noise and Vibration Reduction of an Industrial Robot (산업용 로봇의 소음ㆍ진동 저감 연구)

  • 이광열;정두한;임흥순;김영환;정진태
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.838-844
    • /
    • 2003
  • The noise and vibration reduction schemes of an industrial robot are studied. Experimental procedures are employed to examine the sources of robot noise. A parametric study is undertaken to observe the effects of each part such as gear, shaft and housing on the sound pressure level. After the part which mainly effects on the noise is proved, we propose countermeasures for reducing the noise and vibration of the robot system.

Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings (쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구)

  • Kim, David;Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

Parametric Study of a Wind Turbine Tower Vibration System Supported by Guy Cables (케이블 지지된 풍력발전기 타워 진동계의 변수 분석)

  • Park, Mu-Yeol;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1165-1169
    • /
    • 2006
  • Vibration characteristics of a small stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed with the analytical results. To predict the resonance speed of the cable supported WIT. Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension. cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.