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Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation
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ABSTRACT

This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which
is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a
form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The
method of multiple scales is used to determine the equations that describe to the first-order modulation of the
amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated

applying the frequency response function.

1. Introduction

Research on the dynamics of large-amplitude of the
beam structures is important for engineering and its
applications. The large-amplitude motions are excited
around resonances with finite displacements and
rotations whereas the strains often remain small. The
most comprehensive theory today available to describe
overall motions of rods is the special Cosserat theory of
rods ("’. The beam is mathematically conceived as a one-
dimensional contimmum with a local rigid structure.
Because of the postulated local rigidity, the sections
cannot undergo distortion and warping deformations;
therefore, the theory is mainly restricted to beams with
closed cross sections. Although many attempts have been
made along this line, it is difficult to solve Cossserat’s
basic equations rigorously because of its high generality
and nonlinearity ®. Parametric resonance, which is
characterized by the harmonic variation of coefficients of
differential equations, is well known and has been
studied by numerous authors ®. The response of linear
and nonlinear system subjected to multi-frequency
parametric excitation have been investigated ©%.

Yabuno et al” studied the nonlinear analysis of a
parametrically excited cantilever beam. In particular, the
effect of the tip mass on the nonlinear characteristics of
the  frequency-response  is  theoretically  and
experimentally presented.

In the present research, we theoretically analyzed the
nonlinear characteristics of the simply supported beam
under the parametric resonance for the first-order
modulation. The equation of motion is derived by a
special Cosserat theory and analyzed by the method of

T Member, Mechanical Engineering, Dong-eui University
E-mail : isson92@deu.ac kr
Tel : (051) 890-2239, Fax : (051) 890-2232

* Systems & Information Engineering, Univ. of Tsukuba.

++ Mechanical Engineering, Dong-eui University

multiple scales.

2. Analytical model and equation of motion

We consider a simply supported beam subjected to a
periodic excitation as shown in Fig. 1.. The periodic
excitation is £=a,cosQr, where ¢,,Q and ¢ are the
excitation amplitude, frequency and the time,
respectively. The notation employed in this analysis is as
follows: pA is mass of the beam per unit length; E7
is the bending stiffness coefficient; m and [ are the tip
mass and the length of the beam, respectively. |

Denoting with e, (j=1,2,3) the orthonormal vectors

of a fixed inertial reference frame such that e, is

parallel to the beam base curve, the position of a material
point along the beam axis is represented by the vector
X(x,f) = xe,, where x indicates the coordinate along the
straight undeformed beam axis with the origin O fixed
at the left end of the beam. Thus, the material section at
P is specified by the pair of orthonormal vectors

a,(j=123). We set a =a,xa, so that {a/} are a

right-handed orthonormal basis for the 3-dimensional
Euclidean space.

2.1 Prestressed equilibrivm states
The displacement in the x -axis is assumed to be
defined by the position vector x(x,f)= X(x)+u(x,/) with
u=Ua +va, denoting the displacement vector from P
to F, and by the pair of orthonormal directorsd, where

yo oy d-

Fig. 1 Analytical model of the beam
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U=¢+u. The directors d, and d, are obtained from

a, via a finite rotation about the d, -axis, described by

the proper orthogonal rotation tensor R(x.r), restricted
to the plane spanned by a, and a,, as
cosf —sind

] 0

d =Ra., R=|
4 4 sin@ cosé

Therefore a, and d, are as follows, respectively:

1 0 cosd sin@
= = d = N d 2
i [0} 2 L}’ : [sin&} z {cos&}( )

Consequently, the only nontrivial strains are the axial
strain and the bending curvature, the non-zero
component of the curvature tensor K, and are expressed

as
6’.‘=,/(l+u')z+v'Z -1, k=6-=

2.2 Equilibrium equation
To obtain the equilibrium equations using the
components of the contact force, body force and couple
which are expressed using the current set of directors d,

Vi+u'V —u™
—

(1+e )Z

as
n(x,?) = Nd, + Hd, @
b(x,0) = bd, +byd, ®
m(x,7) = Md, 6)

where N and H denote the axial load and shear force,
respectively. b and b, indicate the body force per unit
reference length along the
respectively, and M is the bending moment. The
equilibrium equations, requiring the balance of linear
momentum and moment of momentum, are
n'(x,)+b(x,£)=0 @)
m'(x,)+ x'(x,0) x n(x,£) + e(x,£) = 0 (8)
where [ x ] denotes the vector product. The
mechanical boundary conditions are
x=0: n(x,))=n(0,£), m(x,/)=m(0,r) 9
x=1:n(x,0)=n(,7), m(x,t)=m(l1) ©)
The equilibrium equations, after filtering out the
shear force H , become

N’+( k ]M’+( k )c+b‘:0 (10)
I+¢, 1+¢,

(M J+( < J—kN—bzzo (1n
I+¢, 1+¢g,

By virtue of D’Alembert’s principle, the body
forces and the corresponding couple are expressed as

b(x,))=~pA(U a, +V a,)

d, and d, directions,

12
=—pA[((]COS€+i}Sin9)dl (12)

+(-(7 sin@ + ﬁcos@)dzJ
c(x,1)=—plba, (13)
where [ -] indicates the differentiation with respect to

time . To inertially uncouple the equations of motion,
we project them into the (a,,a,) basis and obtain

P dx Q
Fig. 2 Strain of the beam element

N -plG
§+u { +1+£ l+5s( 0 )]cos&
N (14)
[ [:Bl—ej sind =0
l+eg,
k ..
Av—| N’ —plB} [si
pav [ +l+£ 1+e:( p ):lsmo
(15)

+ (L) —kN+[—pm) cosd =0
1+¢, I+¢g,

The boundary conditions are
w(0,0)=0, v(0,0)=w(l,1)=0, M©0,))=M(,6)=0 (16)

Ncos@+ M sin0z—m($+if) at x=1 (17)
I+e,

where m is the tip mass. From a constitutive point
of view, because the axial strains are assumed small and
the curvature is finite but moderately large, linear
constitutive equations are assumed in the standard
uncoupled form

N(x,t) = EA(x)e(x,t), M(x,t)= EI(x)k(x,t) (18)

where E stands for Young’s modulus, 4 and 7
denote the area and moment of inertia of the cross
section of the beam, respectively.

2.3 Equation of motion for inextensible beam
When the beam is axially unrestrained to enforce
vanishing of the axis elongation, ¢ =0, which leads to
(1+2) +v2 =1 (19)
On account of ¢ =0, the exact bending curvature,

k=6, and its third-order expansion become
k :v"+u'v"—u”v'zv"+%v'zv" 20)

1-1/2(vY.
The equilibrium equation is Egs. (10}, (11) with
£=0. Therefore, the axial force along the beam can be
obtained by integrating Eq. (10) with £=0 as follows:
Nix,y= N0~ [ kM’ dx~ [ b ax @n
Using the mechanical boundary condition in the axial
direction at x=/ given by Eq. (3), the axial force and
the equilibrium equation in the transverse direction

Moreover, sind=v and cos@=l+u'~
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become
ST m0.1)
N(x,p):—j kM dx - I bdx-M (I,r)tanH(I,I)—m
(22)
M"+ k[M'tam9+ mUsecO]l
=i (23)

vk [ kb de+ [bdx-b,=0

Incorporating the longitudinal motion into the inertial
forces, expanding the resulting equation and retaining
terms up to third order yield the equation of motion.

3. Nonlinear analysis

To obtain the dimensionless equation of motion, the
following dimensionless variables and parameters are
introduced:

. 1 . X % . a,
!t =—, X =—, V =— a:-[—,m

R =—

T ! ! pAl

where T° = p4l*/EI . The resulting dimensionless
equation of motion by taking into account a viscous
damping effect, dropping the star for sake of notational
simplicity and neglecting the rotary term along with the
distributed couples, is

. m

(24)

1110 rom

.
v+v'L (v'2 +v’v’)dx-5vv’2 + 20+ V"V 4 3V

+ %vlzvvlll " [v:vm]L:l " -[x vnvmdx — ‘c(‘}ll + v'ii')dx
7\2
" I‘ V- LK;\))‘Coth + f(f}'z + v'ii')dx:|dx

+a,Q° [V - (1-x)v" Jeos - manzv”(l + %v'z)cosQr =0

(25)
where 4 is the damping ratio in the transverse
direction. The boundary conditions are
v(0)=v"(0)=v(1)=+"(1)=0 (26)
For the case of principal parametric resonance of
the first mode of the beam, we put
Q=2w +0, @n

where & is a small parameter (j <1) of book-

o =80

keeping device and o is a detuning parameter and [*]
denotes O(1) .We also set a,and u, as a,=¢4, and

u = gft , respectively. By the method of multiple scales ®),
we analyze the equation of motion Eq. (25). The uniform
expansions of the solution of Eq. (25) is sought in the
form

N (28)
Multiple time scales are introduced as follows:
=1, t,= sl " (29

We substitute Eq. (29) into the system of equation of
motion Eq. (25) and boundary conditions, use the
independence of the time scales, equate coefficients of
like powers of ¢, and obtain the following:

O(e”z):
Dis =0

0(6’”):

(30)

N 1,
Div, +W" =-2D,D,v, -V, L (D,,vl'l + v['DUv,')dx + EVIZD(,sz

rnom

~ I 2 2
= 20Dy~ =3V Y v"{v{“v,"':l
2

\
-V [‘[—V;ng, + (Do + v{D(,vl')dx}dx
+mof [(Df? + v Dy ) — vt [ Vi die
- 44,0} [v,’ +{x—m— l)v,"]coth

(31

where D, =9/dr, . The boundary conditions are
% (0)=¥(0)=v (1) =v](1)=0,
v;(0)=v5(0)=v, (1) =v{(1)=0

With this approach it turns out to be convenient to write
the solution of Eq. (31) in the complex form

v = {A(r)e™ +cc} (%) (33)
where c¢c denotes the complex conjugate of the
preceding term. We can obtain the mode shape as
#(x)=2sinzx . By considering the boundary condition
Eq. (32) and substituting Eq. (32) into Eq. (31), we

obtain the solvability condition as follows:
2iw (D,A+ f1A)+ BT, A4+ 24,6, p,0l™ A=0

(32)

(34)
Substituting the form 4= B(;,)e**’* and the polar

form B = %ae"ﬂ"ﬂ into Eq. (34) we get

da . dp) o i 4
Z a4+ 2 ——d’BT
(dt ia dtj+2a+,ua 8w,aﬂ‘ \ 35)
~ap Ba,w (cos2f +isin23) =0
Separating real and imaginary parts in Eq. (35)
yields

" (36)

=-—pa+apf pha,w cos2f

d o i .
aT"B = —Ea +8—a}I03,B|F, +ap fawsin2f

Then, the first-order expansion of the solution of
Eq. (25) is given by
v= acos(%f + ﬁ)¢,(x) +cc+0(e¥?)

where « and g are defined by Egs. (36) and (37).

Further solving for the fixed points of the real-valued
modulation equations resulting, the following frequency
-response equation is obtained:

a= {%(%i V(avﬂlﬂzwl )Z -4’ )i' ‘

Fig. 3 shows the stability of the trivial solution for
#=0.04 and three different values of the tip mass,

namelym=2.8 m=4.2 and m="7.4.The hatched re-

&7

(3%)

(39)

=1
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Fig. 3 Stability boundaries of the principal parametric
resonance ( 1 =0.04)

gion indicates the region where the trivial solution is
unstable. When the excitation amplitude a. is constant,
as the tip mass is increased, the unstable region of the
trivial solution is increased. This is likely due to the fact
that the force generated by the tip mass having a fixed
direction parallel to a, produces a destabilizing effect

when it is compressive due to the introduced negative
stiffness.

Fig. 4 shows the influence of the tip mass on the
frequency-response of the inextensible beam when the
damping ratio is # =004 and the dimensionless

excitation amplitude is @, =3.33x10™ . The case

m=74 corresponds to the parameter values in the
subsequent experiment. In Fig. 4, the solid (dashed) line
shows the stable (unstable) branches. As the tip mass is
increased, the frequency-response curve is more bent to
the left. The increase of the tip mass makes the
nonlinearity of the lowest mode more softening, while in
the case of a parametrically excited cantilever beam,
increasing the tip mass makes the mode hardening

4. Conclusions

This paper presents the nonlinear characteristics of the
parametric resonance of simply supported elastic beams.
The beam model, incorporating the inextensibility and
unshearability constraints, describes bending motions
only; hence, it is suitable for beams that are either axially
unrestrained or weakly restrained. The equation of
motion has been obtained employing the special Cosserat
theory and its third-order perturbation has been
determined in a form amenable to an asymptotic
treatment. Via the nonlinear analysis based on the
asymptotic solutions, the effects of the tip mass on the
unstable region of the trivial response and the nonlinear
characteristics  have  been investigated for a
parametrically excited simply supported beam. It is
shown that the increase of the tip mass produces a more
pronounced softening effect, whereas increasing the tip
mass in parametrically excited cantilever beams
produces a hardening effect.
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Fig. 4 Frequency-response curve of the principle
parametric resonance (a. = 3.33x107*)
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