• Title/Summary/Keyword: parametric bootstrap

Search Result 69, Processing Time 0.026 seconds

Parametric Empirical Bayes Estimators with Item-Censored Data

  • Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.261-270
    • /
    • 1997
  • This paper is proposed the parametric empirical Bayes(EB) confidence intervals which corrects the deficiencies in the naive EB confidence intervals of the scale parameter in the Weibull distribution under item-censoring scheme. In this case, the bootstrap EB confidence intervals are obtained by the parametric bootstrap introduced by Laird and Louis(1987). The comparisons among the bootstrap and the naive EB confidence intervals through Monte Carlo study are also presented.

  • PDF

Bootstrap simulation for quantification of uncertainty in risk assessment

  • Chang, Ki-Yoon;Hong, Ki-Ok;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.259-263
    • /
    • 2007
  • The choice of input distribution in quantitative risk assessments modeling is of great importance to get unbiased overall estimates, although it is difficult to characterize them in situations where data available are too sparse or small. The present study is particularly concerned with accommodation of uncertainties commonly encountered in the practice of modeling. The authors applied parametric and non-parametric bootstrap simulation methods which consist of re-sampling with replacement, in together with the classical Student-t statistics based on the normal distribution. The implications of these methods were demonstrated through an empirical analysis of trade volume from the amount of chicken and pork meat imported to Korea during the period of 1998-2005. The results of bootstrap method were comparable to the classical techniques, indicating that bootstrap can be an alternative approach in a specific context of trade volume. We also illustrated on what extent the bias corrected and accelerated non-parametric bootstrap method produces different estimate of interest, as compared by non-parametric bootstrap method.

Empirical Bayes Confidence Intervals of the Burr Type XII Failure Model

  • Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.155-162
    • /
    • 1999
  • This paper is concerned with the empirical Bayes estimation of one of the two shape parameters(${\theta}$) in the Burr(${\beta},\;{\theta}$) type XII failure model based on type-II censored data. We obtain the bootstrap empirical Bayes confidence intervals of ${\theta}$ by the parametric bootstrap introduced by Laird and Louis(1987). The comparisons among the bootstrap and the naive empirical Bayes confidence intervals through Monte Carlo study are also presented.

  • PDF

Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.717-732
    • /
    • 2011
  • We consider bootstrap confidence intervals for high quantiles of heavy-tailed distribution. A semi-parametric method is compared with the non-parametric and the parametric method through simulation study.

Bootstrap Confidence Intervals for the Reliability Function of an Exponential Distribution

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.523-532
    • /
    • 1997
  • We propose several estimators of the reliability function R of the two-parameter exponential distribution, and then compare those estimator in terms of the mean square error (MSE) through Monte Carlo method. We also consider the parametric bootstrap estimation. Using the parametric bootstrap estimator, we obtain the bootstrap confidence intervals for reliability function and compare the proposed bootstrap confidence intervals in terms of the length and the coverage probability through Monte Carlo method.

  • PDF

Forecasting evaluation via parametric bootstrap for threshold-INARCH models

  • Kim, Deok Ryun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2020
  • This article is concerned with the issue of forecasting and evaluation of threshold-asymmetric volatility models for time series of count data. In particular, threshold integer-valued models with conditional Poisson and conditional negative binomial distributions are highlighted. Based on the parametric bootstrap method, some evaluation measures are discussed in terms of one-step ahead forecasting. A parametric bootstrap procedure is explained from which directional measure, magnitude measure and expected cost of misclassification are discussed to evaluate competing models. The cholera data in Bangladesh from 1988 to 2016 is analyzed as a real application.

A Note on Parametric Bootstrap Model Selection

  • Lee, Kee-Won;Songyong Sim
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.397-405
    • /
    • 1998
  • We develop parametric bootstrap model selection criteria in an example to fit a random sample to either a general normal distribution or a normal distribution with prespecified mean. We apply the bootstrap methods in two ways; one considers the direct substitution of estimated parameter for the unknown parameter, and the other focuses on the bias correction. These bootstrap model selection criteria are compared with AIC. We illustrate that all the selection rules reduce to the one sample t-test, where the cutoff points converge to some certain points as the sample size increases.

  • PDF

Comparison of Parametric and Bootstrap Method in Bioequivalence Test

  • Ahn, Byung-Jin;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.367-371
    • /
    • 2009
  • The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

Change-Point Estimation and Bootstrap Confidence Regions in Weibull Distribution

  • Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.359-370
    • /
    • 1999
  • We considered a change-point hazard rate model generalizing constant hazard rate model. This type of model is very popular in the sense that the Weibull and exponential distributions formulating survival time data are the special cases of it. Maximum likelihood estimation and the asymptotic properties such as the consistency and its limiting distribution of the change-point estimator were discussed. A parametric bootstrap method for finding confidence intervals of the unknown change-point was also suggested and the proposed method is explained through a practical example.

  • PDF