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Empirical Bayes Confidence Intervals of
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Abstract

This paper is concerned with the empirical Bayes estimation of one of the
two shape parameters(f) in the Burr(g3, 8) type XII failure model based on type-
IT censored data. We obtain the bootstrap empirical Bayes confidence intervals
of @ by the parametric bootstrap introduced by Laird and Louis(1987). The
comparisons among the bootstrap and the naive empirical Bayes conﬁdence
intervals through Monte Carlo study are also presented.
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1. Introduction

The Burr type XII(Burr(g,6)) distribution is used as a lifetime model by several
authors. Burr and Cislak(1968) have shown that if the parameters are appropriately
chosen, the Burr((3,0) covers a large portion of the curve shape characteristics of
type I, IV, VI in the Pearson family. Thus the use of the Burr(f3, #) as a failure model
is appropriate and use to applied statisticians. Lewis(1981) noted that the Weibull
and exponential distributions are special limiting cases of the parameter values of
the Burr(5, 0). The usefulness and properties of this distribution as a failure model
were discussed by Papadopoulos(1978), Al-Hussaini, Ali Mousa and Jaheen(1992),
Al-Hussaini and Jaheen(1992) and Ali Mousa(1995). Empirical Bayes(EB) methods
effectively incorporate information from past data(or other components in simul-
taneous estimation) by means of analyzing the marginal density of all the data
present and past given the prior parameters. We consider the familiar exchangeable
Bayesian model. That is, we are simultaneously testing k populations. For the i-th
population, ¢ =1,-- -, k, we test n; devices until the number of failures are r;. At
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first stage, the independent lifetime ¢;; for each device tested in the i-th population
is assumed to be Burr(g3, ) with known parameter 3 and unknown parameter 6;,
i.e.,
- bi+1)
1 (t516:,8) = Ot~ (1 + 1) ()
Let t; = (ti,t, -, tir,) denote the ordered lifetimes of the r; devices that
failed in the i-th population, where ¢;; <--- < t;,. Then

Ti
T; = In(1 + ;%) + (n; — ;) In(1 + tir,7) (2)
j=1

is the sufficient statistic for §; and has gamma distribution G(r;, 8;) [see Al-Hussaini,
Ali Mousa and Jaheen(1992)], i.e.,

;'
I(r:)

At the second stage, the §;’s are supposed independently and identically dis-
tributed the gamma distribution G(u + 1, v), as used by Papadopoulos(1978) and
Evans and Regab(1983), which is given by

f(Tzwl) = TT’ eXp(—GiTi), T, 92’ >0 (3)

vu+1
w(0;) = m%‘exp(—&v), u>-1, v>0, (4)
Then the posterior distribution of ¢; given T; is G(r;+u+1, v+ T)), ie,
(U + Ti)ri+u+1
F(ri +u—+ 1)
Based on a squared error loss function, the Bayes estimator of the ”current”
values §; are their posterior mean, see for instance Maritz(1989)], is given by

ri+u+1

F(6ilTi, u,v) = 6," exp(—(v + T})6;). (5)

) = I\ = ————— ~1.
Also, the marginal density of T; is given by
,U’u+l ’I;ri_l
h(nlu: 'U) - B("'i: u+ 1) (’U + fZ’i)TH—u-{—l ) (7)
Thus the joint marginal density of T is given by
putl szri—l
PTlu,0) = H L B(ri,u+ 1) (v + Tyyrerl’ ®

where T = (Tl, Tg, tee ,Tk).
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2. Moment(Hyperparameter) estimators to prior selection

Lemma(Berger (1985)) Let p¢(8) and 0}% (8) denote the conditional mean and
variance of T (i.e, the mean and variance with respect to the density f(t]6)). Let pm
and o2, denote the marginal mean and variance of T with respect to A(T). Assuming
these quantities exist, then y,, = E™[u;(6)] and 02, = E”[a? O] +E[(1£(8) — pn)?]-

We will assume r; = r for all i. Using Lemma which relates the marginal mean
and variance to prior moments, we have for all 7,

r v+1

00
—_EMT] (T -

pim = E"(T = [ Th(Tu,v)aT; = 52 ©)

and

on = E(0})+E (s — pm)?)
2 9 2
_ r 2[ 1 ('u+1)(2v+ )+(v+1)gv+2)_(v+1)]' (10)
(r—1)°tr—2 u u u?

Since p, and 0’12n are the marginal mean and variance for 73,7 = 1,---,k, we can

estimate them as follows : i, = 3573 / kand 62 = Y5 (Ti— )2 / (k=1) .
We can solve for u and v from (9) and (10) using fi,, and &2, instead of i, and o2,.
It follows that the moment prior estimates of u and v are

" s? N T+1
v—max[m—l, 1] and u—ma.x[ S 0} (11)
where
r+l =D -2DE s e, St :
S = —Fim and Sy = T2 iglel =5+ w (12)

The truncated version is obtained because without the condition v > —1 we do
not have finite variance in the prior distribution. Moreover, u must be positive.

3. Naive empirical Bayes confidence interval

Let & = (@, 9 ) be the moment prior estimator of § = (u,v) computed from the
marginal distribution of T;. Then the estimated posterior distribution of #; given T;
isG@+r;+1, 4+ T; ), that is,

@+ T%)r;-f—;HI

fO:|T, 8, ©) = C(ri+a+1)

0,7 iexp(~ (5 + T3)0;) (13)
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Now, we construct the equal-tailed 100(1 — 2a)% EB naive confidence interval
for 8; based upon f(6;|T;,%, ¥ ) as follows:

( ‘7:2—(1‘1)+ri+1)(a) ‘7:2_(1};+r,-+1)(1 — o) )

sTi+a) AT +7) (14)

where F}. denotes the cumulative distribution function of chi-square distribution
with k (not necessarily integer) degrees of freedom. This interval is called “naive”
because they ignore randomness in § = (u, v). Though relatively easy to compute,
they are often too short, inappropriately centered, or both, and hence fail to attain
the nominal coverage probability.

4. Bootstrapped empirical Bayes confidence intervals

We will suggest several bootstrap methods in order to correct the bias in the
naive confidence interval based on f(6;|T;,%, ¥ ) and show how they may be used
to compute confidence intervals.

Marginal posterior method

Laird and Louis(1987) suggested approximating the marginal posterior of §; given
T; by type III parametric bootstrap. That is, given 5= (@, v ), drew 8} from
(6] & )- Then drew ¢j; from f(t;]67), and finally calculate §* = (u*, v*) using
t;;- Repeating this process N times, they obtained 67 = (u;‘-,v;), i=1.---.N
distributed as g(:| 5 )- By type III parametric bootstrap, we obtain the discrete
mixture distribution mimicking the hyperprior calculation given by

1 60 v;
Hy(6:|T;) = N 21 Fotwi+ri+1) (m) (15)
]:

As defined, H}(6;|T;) can be used directly to pr(')d.uce equal-tailed confidence
intervals for 6; by solving

Cy, 0 |
&= [ ameir) = [ dH(0T;) (16)

Therefore, the 100(1 — 2a)% EB marginal confidence interval for f; is given by
(CrL, Cu).
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Bias-corrected naive method

In the exchangeable case, Carlin and Gelfand(1991) developed a direct condi-
tional bias-corrected naive method. Let go(Ti,6 = (u,v)) is such that Pr(f; <
4a(T;,8) | 0; ~ £(8; | T;,0)) = o Define (4,6, T;,a) = Pr(6; < @(T;,8) | 6; ~

f(0; | T3,0)) and R(6,T;, ) = 5|T1-,6{T(5 9,T;, o)}, where the expectation is taken
over g(g |T;,6) which is a density with respect to Lebesgue measure. We omit the
detail. See Choi(1996, 1997). By unconditional EB correction method, we obtain
the type III parametric bootstrap estimate of R(4, T}, a’(l)) given by

1 i+T
N > Fo(vensn) (mfz(i;+n+1)(ab))) =a (17)
J=1 J 4 .

where we equate to a and solve for azl). Then the 100(1 — 2a)% unconditional EB
bias-corrected(I) naive interval for 6; is given by

y / .7-" 1-af
( (v+r,+1 ( (1)) 2(d47; +1)( (1)) ) (18)

2T +17) 2(T; + u)
If we desire interval corrected only for unconditional EB coverage, the bootstrap
equation becomes

1Y a+Ty )
NZ; & “”“)(&;Tﬂ}f 25 +ri41) (O(2)) | = (19)
]:

where we equate to a and solve for a22). Analogous to expression (18), we obtain
the 100(1 — 2a)% unconditional EB bias-corrected(II) naive intervals for 6; given by

1 -1
( 2(5+Ti+1)(a22)) : 2(f1+ri+1)(1 — O((Z)) ) (20)

AT +3) 2(T; + )
For correction conditional on T;, Carlin and Gelfand(1990) modified the Laird and
Louis(1987) procedure. By conditional EB bias-corrected method on T; = t;, we
obtain the type III parametric bootstrap estimate of R(4, T3, 0523)) given by

1Y u+T; .,
T 2 Fo Tane) -_*—‘F2(v wrn(y) ) =a (21)
N 2 T,

where we equate to o and solve for 03). Therefore, the 100(1 — 2a)% conditional
EB bias-corrected(III) naive interval for ; is given by

( _(v+r,+1)(a(3)) ‘7:_11+r +1)(1 23)) ) (22)

2T, +a) 2(T, + @)

159



160 Dal-Woo Choi

5. Comparisons and conclusions

Random samples of different sizes are generated from the Burr(3, 6) distribution
(see AL-Hussaini and Jaheen(1992)) and the EB confidence intervals are approxi-
mated by Monte Carlo method. We consider the censoring rate (CR) defined by
100(1—7/n)% of 0%(=complete case), 10%, 50%. For given independent random
samples a EB confidence intervals are computed by each methods with bootstrap
replications B = 1000 times. And the Monte Carlo samplings are repeated 500
times. We define the mean length by (Zf(()j,up —0,1,))/R, where R is the number
of Monte Carlo simulation replication. The comparisons of the naive and the boot-
strap intervals against the moment prior estimator when the hyperparameters u, v
are unknown are presented in Table. We can observe the following results:

1. Bias-corrected naive bootstrap interval(I) obtained using type III parametric
bootstrap has more accurate than those of the other bootstrap intervals in the
desired nominal coverage.

2. The coverage probabilities of bootstrap intervals obtained using given type III
parametric bootstrap are better than that of the naive interval.

3. The mean lengths of bootstrap intervals obtained using given type III para-
metric bootstrap are no longer than that of the naive interval.

4. The coverage probabilities of all the intervals are linearly down as the censoring
rate increases.

Table. Comparison of Empirical Ba&es Confidence Intervals in Burr(8 = 2, 6).

1. Sample size: n =10, a = 0.05

Interval method CR= 0% CR= 10% CR= 50%

Coverage Length | Coverage Length | Coverage Length
EB Naive 0.716 1.096 0.712 1.318 0.669 1.864

Bias-correct(I) 0.920 0.958 0.901 1.121 0.880 1.419
Bias-correct(II) 0.888  0.906 0.863  0.982 0.803  1.125
Bias-correct(III) | 0.903  0.898 0.891  0.951 0.856  1.001
EB Marginal 0.782  0.910 0.756  1.002 0.694  1.437
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2. Sample size: n =20, a =0.05
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Interval method | CR= 0% CR= 10% CR= 50%
Coverage Length | Coverage Length | Coverage Length
EB Naive 0.812  0.892 0.768  0.978 0.717 1.065
Bias-correct(I) 0.926  0.899 0.911 0.918 0.898  0.995
Bias-correct(II) 0.908  0.754 0.893  0.806 0.850  0.916
Bias-correct(III) | 0.918  0.739 0.900 0.816 0.889  0.895
EB Marginal 0.895 0.883 0.881 0.914 0.786 0.986
3. Sample size: n =50, a =0.05
Interval method | CR= 0% CR= 10% CR= 50%
Coverage Length | Coverage Length | Coverage Length
EB Naive 0.876  0.752 0.850  0.825 0.823 1.093
Bias-correct (1) 0943  0.778 0.938  0.806 0.905 0.987
Bias-correct(II) 0.920 0.694 0.901 0.758 0.873 0.926
Bias-correct(III) 0.936 0.582 0.919 0.673 0.896 0.725
EB Marginal 0.915 0.668 0.903  0.700 0.853  0.847
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