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Bootstrap Confidence Intervals for the Reliability Function
of an Exponential Distribution

Suk-Bok Kangl) and Young-Suk Cho?)

Abstract

We propose several estimators of the reliability function R of the two-parameter
exponential distribution, and then compare those estimators in terms of the mean
square error (MSE) through Monte Carlo method. We also consider the parametric
bootstrap estimation. Using the parametric bootstrap estimator, we obtain the
bootstrap confidence intervals for the reliability function and compare the proposed
bootstrap confidence intervals in terms of the length and the coverage probability
through Monte Carlo method.

1. Introduction

The mathematical theory of the reliability has grown out of the demands of modern
technology and particularly out of the experiences in World War II with complex military
systems. One of the first area of the reliability to be approached with any mathematical
sophistication was the area of machine maintenance. The earliest attemps to justify the
Poisson distribution as the input distribution of calls to a telephone trunk also laid the basis
for using the exponential as the failure law of complex equipment.

In life testing research, the simplest and the most widely exploited model is the two-
parameter exponential distribution with p.d.f.

ﬂx;e,a)=laexp(—La‘91), 0 6 x, 0 < a, (L1)

where 6 and o are the location and the scale parameters, respectively.

In the study of life testing and reliability analysis one important approach has been to
consider an underlying life distribution and to find suitable estimates of the parameters of that
distribution. Epstein and Sobel (1954) published a paper that presented the maximum likelihood
estimators (MLEs) of the scale and the location parameters in the two—-parameter exponential
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distribution. Singh and Gupta (1993) studied the estimation of the parameters of an exponential
distribution when the parameter space is restricted. Sinha (1985) obtained the Bayes estimates
of the reliability function in a normal distribution. Woo and Kang (1986) considered the
jackknife estimation of the reliability function in a Poisson distribution. Kang (1987) considered
the jackknife estimation of the reliability function in a exponential distribution when the scale
parameter is known. Abedin and Karson (1993) studied shrunken estimators and Bayes
estimators of the reliability function in the one parameter exponential distribution when
observations are time censored and replaced.

The bootstrap method, introduced by Efron (1979), is resampling technique and a very
general method to create measures of uncertainty and bias, in particular at parameter
estimation from independent identically distributed variables. Efron (1981, 1982, 1985, 1987) has
introduced and refined the percentile method of using bootstrap caculations to set approximate
confidence limits for parameters. These refinements of the percentile method are the bias
corrected (BC) percentile method and the accelerated bias—corrected (BCa.) percentile method.
The bootstrap method and other methods for assessing statistical accuracy are summarized by
Efron and Tishirani (1993). Recently, the theoretical properties of the jackknife and bootstrap
methods are summarized by Shao and Tu (1995). Kang and Cho (1997) proposed the
nonparametric bootstrap confidence intervals after bias correcting.

In section 2, we compare the estimators of R in terms of the MSE through Monte Carlo
method and obtain the parametric bootstrap estimator of K. Using the proposed bootstrap

estimator, we obtain the bootstrap confidence intervals for R and compare the bootstrap
confidence intervals through Monte Carlo method, and summarize the numerical results.

2. Parametric Bootstrap Confidence Intervals

Let X;, X;,..., X, be a random sample from two-parameter exponential distribution
(1.1). These random variables represent the life-lengths of # identical systems and X >
X @, ..., X be the corresponding order statistics. The reliability function for given time

! in two-parameter exponential distribution is given by

en(Z0). 16
R(t0,0)=
1, t < 8.

(2.1

Since the MLEs of ¢ and 6 are given by

,‘}MLE = 21( Xi_X(l))/n
PMLE = X(l).
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The MLE R,;zz(t;6,0) of the reliability function is given by

n(t— X(l))

;(Xi—X(l))
1, t< X,

exp

Rye = 2.2)

], tz X

Now, we propose several estimators of R using the several estimators of the two
parameters 6 and o.

First, by using the UMVUE o, ﬁ:l(X,-—X(l))/(n—l) of ¢ and the minimum risk
&

estimator (MRE) By~ (n+ DX )/n— ﬁlXi/ n® of 6 among the class of the estimators of
&=

the form ¢, X+ ¢ 2(X;—X)/n(c, and ¢, are constants), the estimator R 3(; 6, 0)
mt e o

is given by

(n—1)(n%t+ ZIX,-— n(n+1)X 1)

exp |—

Ru(£:6,0)= 33— X )
1, t < 9),{,

., t= By

(2.3)

Second, by using the MLE P me of o and the MRE /9M of @, the estimator of
R uu(t;6,0) is given by

n’t+ 21X,-— n(n+1)X o
exp |— =

?Mu(t;a, 0')= n ;(Xi—X(l))
1, t< By

1= By (2.4)

Third, by using the UMVUE G, of ¢ and the UMVUE 8, =nX/(n—1)
—g}Xi/n(n—l) of 6, the estimator R yy(¢;0,0) is given by

n(a—Di+ 2 X~ n*X o)
el " 12 Bo 25
Ryu(t; 0,0= "gl(Xi‘X(n) :
L, t< /9(].

Theorem 2.1. The proposed estimators of R are consistent estimators.
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Proof. Since E[( Q15— 0)1=2d/n* El( By— 0)*1=d/(n—n, E[( e —0)?l=
/n, E( ou—0)=d*/(n—1),and EH(b8y— 0= (n+1)/n, the parametric

estimators of the location and the scale parameters in an exponential distribution are
convergence in propability to parameter. From these results, Slutsky’s theorem, and the fact

that e~ ” is continuous function, this completes the proof.

From (2.2), (23), (24), (25), we calculate the mean squared errors of the estimators for
sample size n = 10(20)50(based on 2,000 Monte Carlo runs) when the location parameter
0=1 and the scale parameter 0=0.5(0.5)1.5, and #=1.2, 2. These values are given in

Table 1. From Table 1, the estimator R uu is more efficient than the other estimators in

the sense of the MSE. So we propose the bootstrap estimator R MU' of R as follows;

exp ——‘—tiaf’ () )
RMU*(b)‘_“{ oy (b)
1, t < By (b).

Theorem 2.2. The bootstrap estimator R MU‘ is a consistent estimator of R.

Proof. For arbitrary positive ¢,

~ - ~
E(_ oy — 0ur)
P[I Oy — UMLEIZE] S_‘“ez

_ E[E[( oy~ 0un)*1 X, Xs,.... X, 1]
- 2

[
_ E( G )
T (n=1)&
=-—i2 — 0, as n —> o
ne
and A
. 2
P[l 3,,‘—- Pulze] < E( ,auez ,bu)

_E[ELC 3= B3y )4X, X, ... X, 1]
- 2
&

_ (+DEC G )
- 3.2

ne
(2= :
= n42 —>0’asn—>00'

ne

where El - 1X1,X,,...,X,] denotes the conditional expectation for given
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X, X3, ..., X, Therefore, ?ru* and EM* converge in propability to ¢ and 6,

respectively. Since e ¥ is continuous function, R MU* converge in propability to R.

We can not obtian the exact confidence interval for K. So we can obtian the approximate

confidence intervals for R by using the bootstrap confidence intervals and the parametric
bootstrap estimator.
The parametric bootstrap method algorithm is the following. Among the several estimators

of the scale and the location parameters, aM and /BMLE are more efficent than the other

estimators in the sense of the MSE. So we select B independent bootstrap samples
X', X", ..., X'® each consisting of 7 data values which are generated from

F( @y 0ur) and evalua te the bootstrap replication corresponding to each bootstrap sample
(b=1, 2,.... B), By ()= Bu( X" and 0, (&)= oy( X",

By the parametric bootstrap estimator ﬁuu' of R, we propose the parametric bootstrap
confidence intervals for K. Let G be the cumulative distribution function of R MU*. Then

the 100(1 —2a@)% percentile interval is defined by the @ and 1—a percentiles of G;
[ Ruo. Ryuwl=I & (), 61—l

Since by definition 6 e = Ry (@) the 100 - eth percentile of the bootstrap

distribution, the percentile interval (PI) can be written as

[ ﬁ%.ln» ﬁ%,up]=[ P‘MU (a), ﬁ‘MU (1-a)]. (2.6)
From the assumption that
Ruwv—R
T="%2(R) =i

where ¢,_, represents the Student’s ¢ distribution with #—1 degrees of freedom and

se( R,y is the bootstrap estimator of standard error of Ry, the ¢ interval (STD is
given by

[ Ry 0, /R%,uﬁ]=[ Ruv—to (1—a@) > s, Ryp—ta-y (@) - sel, 2.7

where t,_; (@) is the 100 - ath percentile of the ¢ distribution with #—1 degrees of
freedom.

The bias-carrected and accelerated ( BC,) interval is a substantial improvement over the
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percentile interval in both theory and practice. The 100(1—22)% BC, interval is given by

[ ﬁ’%,/a. ﬁ%,up ]=[ ?Mu(m). ?MU(GZ)], (2.8)
where '
. ~ 2\0"'2((1)
“ “”(z"* 1—a<20+z<a)))
_ ~ 2p:2(1—a)
”2 = ¢(ZO+ 1- 5(zg+z(1—a)))

and @( ) is the standard normal cumulative distribution function, and z(a) is the 100 - ath
percentile point of a standard normal distribution. The value of the bias—correction fz\o is
obtained directly from the proportion of the bootstrap replications less than the original ’

estimator R MU»

jz\oz(pﬂ( #{ ?Mu(g) < R ) )’

where @ ! is the inverse function of a standard normal cumulative distribution function.

There are various ways to compute the acceleration a. Usually a is calculated by jackknife
method.

Let X ' be the original sample with the ith point %, deleted, let B 4y ' = B ( X ),

and define R (-)= Zl R MU—i/ n. The acceleration is given by
121( R(- )— jéMU_i )3

. 32
6[ Z}( R(:\)- Ry ' )2]

From (26), (2.7), (28), we calculate the bootstrap confidence intervals for R for sample
sine 7 = 10(20)50 (based on 100 Monte Carlo runs and B=1,000) when the location parameter

=1 and the scale paremater 0=0.5(0.5)15, and time ¢=1.2, 2, and then obtain the average
length (AL) of approximate confidence intervals

~
a=

_ (Royw@®d— Ryo®)
AL= gl * 100

and the percentage of trials that the indicated interval missed the true value on the left ( %
Miss Left) or right (% Miss Right) side, and coverage probability (CP) of bootstrap
confidence intervals. These values are given in Table 2.
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From Table 2, we obtain the following results;

1. When the sample size is samlil ( #=10) and R is small,
of AL but BC, is better than PI in terms of CP.

2. When the sample size is large ( #=30), BC, is belter than PI in terms of AP and CP in
the case of small K, but PI is better than BC, in the case of large K. Since Pl method is

simple, we know that the bootstrap percentile interval provides good interval estimation unless
n is large and R is large.

Pl is better than BC, in terms

Table 1. The mean squared errors for the estimators of R.

n Estimator R=37 R=51 R=67 R=82 R=388
R e 01601 01709 01628 01052 00692
10 R 01350 01362 01233 00763 00531
R um 01500 01656 01533 00939 00669
R w 01330 01353 01235 00779 00561
R e .00470 .00440 .00314 00208 00168
% R 00441 00409 00282 00159 00107
R uu 00468 .00449 .00312 00175 00117
R w 00441 .00409 .00282 00159 .00108
R s 00286 00250 00168 .00094 00075
5 R e 00275 00239 00159 00077 00053
R um 00283 00253 00171 .00082 00057
R w 00275 00239 .00159 00077 00054
Table 2. Comparision of bootstrap confidence intervals for R
(6=1.0,0=1.0,t=2.0,R=.37)
n Method AL %Miss Left | %Miss Right CP(90%)
PI 35499 0 15 85
10 STI 39677 1 7 92
BC, 37167 10 1 89
PI 21454 3 14 83
30 STI 22161 5 8 87
BC, 21347 11 3 86
PI 16826 2 8 90
50 STI 17145 3 4 93
BC, 16728 4 2 94
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Table2.(continued) (6=1.5,8=1.0,t=2.0, R=.51)

n Method AL %Miss Left | %Miss Right CP(90%)
Pl 37066 2 12 86
10 STI 41584 2 5 93
BC, .38640 10 3 87
Pl .21089 1 9 90
30 STI 21871 3 3 94
BC, .20509 5 3 92
PI 16120 4 10 86
50 STI 16475 4 7 89
BC, 15876 4 5 91
Table2.(continued) (6=0.5,0=1.0,t=1.2,R=.67)
n Method AL %Miss Left | %Miss Right CP(90%)
PI .34880 4 17 79
10 STI 39143 4 3 93
BC, 37393 9 2 89
PI 17535 1 12 87
30 STI 18286 4 5. 91
BC, 17061 8 5 87
Pl 13031 3 2 95
50 STI 13317 4 1 95
BC, 12670 6 1 93
Table2.(continued) (6=1.0,6=1.0,f=1.2,R=.82)
n Method AL %Miss Left | %Miss Right CP(90%)
PI .29492 10 2 88
10 STI 31416 9 0 91
BC, 28089 11 0 89
Pl 13101 7 7 36
30 STI 13712 5 2 93
BC, 13887 13 2 85
Pl .09098 4 7 89
50 STI 09379 4 2 94
BC, 09313 9 2 89
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Table2.(continued) (6=1.5,0=1.0,t=1.2, R=.88)

(1}

(2]

(3]

(4]

(5]

[6]

(71
(8]

(9]

n Method AL %Miss Left | %Miss Right CP(90%)
PI 24576 16 3 81

10 STI 26520 16 0 84
BC, 22160 17 0 83
PI 11269 13 4 83

30 STI 11645 10 2 38
BC, 12458 17 0 83
PI 07663 5 3 92

50 STI 07951 5 3 92
BC, 08240 7 2 91
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