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Change-Point Estimation and Bootstrap Confidence
Regions in Weibull Distribution!

Kwang Mo Jeong!

ABSTRACT

We considered a change-point hazard rate model generalizing constant
hazard rate model. This type of model is very popular in the sense that the
Weibull and exponential distributions formulating survival time data are
the special cases of it. Maximum likelihood estimation and the asymptotic
properties such as the consistency and its limiting distribution of the change-
point estimator were discussed. A parametric bootstrap method for finding
confidence intervals of the unknown change-point was also suggested and
the proposed method is explained through a practical example.

Keywords: Change-point model; Hazard rate; Limiting distribution; Parametric
bootstrap; Weibull distribution.

1. INTRODUCTION

In classical change-point problem the main concern has been on the mean
changes in a sequence of random variables. If the functional forms of distribu-
tions are known parametric methods such as the maximum likelihood estima-
tion(MLE) and the likelihood ratio test(LRT) are usually used. Hinkley(1970),
Worsley(1986) and Siegmund(1988), among others, are the researches of this
type. On the other hand Bhattacharyya and Johnson(1968), Darkhovskh(1976),
Carlstein(1988), and Boukai(1993), Chang, Chen and Hsiung(1994) studied the
change-point problem in a nonparametric set up.

We mainly concentrate on the change-point hazard rate model. We may ex-
pect early failures with one hazard rate and next another hazard rate after a
specific time point. For a data set of survival times of patients or mechanical
components there exists high initial risk but it settles down to lower long term
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risk. This type of change-point problem assuming constant hazard rate before
and after a certain time point is treated by, for example, Nguyen, Rogers and
Walker(1984), Yao(1986), Pham and Nguyen(1990), and Loader(1991). Asymp-
totic properties such as consistency of MLEs and their limiting distributions have
been the main interests in change-point hazard rate models. For the case of con-
stant hazard rate model Yao(1986), and Pham and Nguyen(1990) independently
discussed these asymptotic properties. In particular Pham and Nguyen(1991)
showed that the parametrically bootstrapped estimator also has the same limit-
ing distribution as that of MLE.

We extend the constant hazard rate model to more general ones so that it can
be applicable to wider problems. We similary suggest MLEs and also examine
the consistency and its limiting distribution under the assumed change-point
model. Both complete data and censored data will be considered. Because of the
complexity and non-normality of the limiting distribution we cannot directly use
it in finding a confidence interval of change-point. In this respect a bootstrap
approximation can be a good alternative to finding confidence interval of change-
point. The proposed method will be explained through a practical example and
also will be compared with that obtained by Loader(1991) under the constant
hazard rate model.

2. ESTIMATION OF CHANGE-POINT

2.1. Change-Point Hazard Rate Models

Let T be a random variable from a distribution function F'(¢) and probability
density function (pdf) f(¢). The hazard rate A(t) is defined by

(@
M) =37 FE

with the corresponding cummulative hazard function A(t) given by
t
A(t) =/ Au)du = —log[l — F(t)] .
0

From this relationship we can express f(t) as

£(£) = A(t) exp(~A(2)) . (2.1)

A constant hazard rate change-point model which corresponds to the expo-
nential distribution is of the form
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where 5, and ; are unknown constants, and 7 is an unknown change-point.
Until now a simple model of this type has been mainly studied. If hazard rates
are not constant but functions of time we need to generalize the model (2.2). In
particular we confine our attention to a model of the form

%it'“_l , t<T

! <

At) = (2.3)
22 ¢72-1 t>T
B2 ? ?

which corresponds to a Weibull distribution that is very popular in survival time
data. The parameters 7;, 72 and S, (2 denote shape and scale parameters,
respectively. If 1 = 72 = 1 the model (2.3) is reduced to a constant hazard
rate model (2.2) of exponential distribution. It also includes some other useful
distributions as special cases.

2.2, Maximum Likelihood Estimation

Let T1,T%,+- ,T, be independently observed failure times with hazard rate
defined by (2.3) and let 8 = (v1,72,01,02). Hereafter we assume the observa-
tions are complete with no censoring until otherwisely stated. The log-likelihood
function [,(r, ) can be written, from (2.1), as

In(1,0) /logfg(t) dF,(t)

x  Fy(7)log (%) + (1~ Fp(1)) {108; (%) - (% - %)}

71

+ 12{ log Ty — }+EZ{ lo T-—Tiw} (2.4)
n 71 10g Ly 4 nT"}T Y2 log Ly 5 . -

T.<T

By differentiating [, (7, 8) with respect to 8; and equating to zero we find that

@ = M) dFa(t) + 77

ﬂl (Tv ’Yl) = FTL(T) ’
R (412 _ 2 (2.5)
Po(r,v2) = fT (ﬂ ") dh ()

1 — Fp(7)
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For simplicity of notations we denote Bi(T, vi) as G;. If Ty €7 < Tipy1) then G;
can be expressed as
A TTH 4+ (n—r)rm 4 T — (n— )T
R i (2.6)

T n—r

By substituting §; into (2.4) we obtain the pseudo-likelihood function I (7, ~)

f(r) o Fa(r)log (27) +(1— o) log (;—)

1 2

| 1
+ EZ’YlIngmL;L‘Z’YQIOgT?:, (2.7)
Ti<r T >T

where v = (71,72). )
Next the MLE of (7,+) is found as the maximizer of [,,(7,-y), that is,

(7,9) = arg MaXr, <7< 8UPy0 l;z(Ta'Y) )

where the interval [, 5] is usually taken to be a random interval [B,,, B, ] with
B, = B, (T\, - ,Ty) and B, = B, (T, ,T,) defined on the given sample. The
random interval [B,, B, ] can be taken in various ways, for example, [T1y: Tin-1))s
and we refer to Worsley(1988), Loader(1991), and Chang, et al.(1994) for further
discussions on it.

For any fixed 7 such that T(;jy < 7 < T(,,1 the likelihood equations of -y; are
obtained as follows by differentiating [, (7, ) with respect to 1, o, respectively.

r_ (n —r)—:l—T'“ logr = Ai Z T logT; - Z log T; ,
n 1 l1<r Ti<r
n—r 1 1 (2:8)
+(n—r)=—1"logr = — Z T)%logT; — Z log T; .
"2 P2 2T >t T.>7

Iterative methods such as Newton-Raphson may be used to find simultaneous so-
lutions of (2.6) and (2.8). Usually the MLE of 7 is taken over the set {T(3y—, Ty,
Ty — T(n)} of order statistics T(;ys , where 7;)— means the MLE is attained
as 7 approaches T(,) from below. As was noted by Nguyen, et al.(1984) in constant
hazard rate model as 7 — Tiyy, In(7, 7) is unbounded.
For the case of constant hazard rate change-point model the consistency of 7
was established by Nguyen, et al.(1984), Ya0(1986), and Pham and Nguyen(1990).
We extend Lemma 1 of Pham and Nguyen(1990) to a parameter vector case to

derive the consistency of 7 under the assumed change-point model (2.3).
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Lemma 2.1. Let [(7,7) be a true pseudo-likelihood function for the change-
point model (2.8). Then the following facts

(i) ln (1,7) converges a.s. to I (r,~) uniformly in 7 on [B,,B.] and 7,
(i) limsupB, < 75 < lim infB," a.s.
(i) 1(7,%) is continuous and also has a unique mazimum at (10,70)

hold, and hence the MLE (%,%) is strongly consistent.

Proof We may regard -y; as nuisance parameters and briefly check the condi-
tions in a similar manner to Pham and Nguyen(1990). First, the a.s. convergence
follows from the strong law of large numbers and the uniformity can be shown as
was done for the constant hazard rate model. Next, the second condition states
on the methods of choosing intervals. Finally, [31-(7, ;) 18 continuous at v, and
similarly the continuity of I(r,) follows by transforming the time 73.

3. LIMITING DISTRIBUTION

For the special case of constant hazard rate change-point model the asymp-
totic distribution of 7 was independently established by Yao(1986), and Pham
and Nguyen(1990) in a little different but in fact identical form.

To discuss the limiting distribution of 7 we define

0 .
— irede) 2oj=iZi,  for i <0
R; =

1 3 .
000 2321 Zj for i >0,

where Z;s are independent exponential random variables with unit mean, and

Y10
Y10 _q19-1 ( To )
w(rg,B80) = —m exp | ———
( ) Bro ° B0
Y20
V20 ya0-1 ( 7o )
v(t,@y) = -——, exp | —
( ) Boo ° Bro

with 7y, 8y denoting true parameters.
For the pdf f(t,7,80) corresponding to the hazard rate of (2.3) we check the
following regularity conditions C; through C3 of Chernoff and Rubin(1956).
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For 6 in some neighborhood about 8¢

tlim ft,7,0) = p(m,0) >0, lim ft,7,0) =v(70,0) >0
T—"fo T—"TO
t<T t>T

hold uniformly in some interval of @y and also continuous at 8.

For t not belongs to between 7 and 7y the continuity at 7p implies the
relation

IOg f(t: 7, 0) - log f(ta TO-)G) _ alOg f(tu 7-079)

T —Tg aT

+ H(t)-o(1)

with E[|H(T)|| m0,600] < o0, and dlog f(t, 70, 0)/07 is bounded.

For some interval about 8y we use strong law of large number and the
uniformity of empirical distribution function to show that

1i dlog f (T;, 70, 0)
n i or

converges uniformly in probability to

5(6) = E{al"gfgf”‘”e) 170,90} = u(70,8) — u(r0,9) ,

where 4(8) is continuous at 6.

Then for the change-point model (2.3) we obtain the following theorem.

Theorem 3.1. Under the regularity conditions C) through C3, as n goes to

infinity, we obtain

n(# — 10) - Ry,

where -2 denotes the convergence in distribution, and I is the index realizing

the mazimum of

; = 1lo #—(@LO) v(T — p(7 )
51 = itog (I2:00) < (u(r0,0) — o, 00) B
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4. CONFIDENCE INTERVAL OF CHANGE-POINT

4.1. Confidence Interval Using Bootstrap Distribution

Various methods for finding confidence regions of the change-point have been
treated by many authors, in particular by Siegmund(1988). For the special
change-point model of constant hazard rates Loader(1991) applied a large de-
viation technique to determine LRT based confidence regions. But this technique
cannot easily be applied to the model of our interest, to which a bootstrap tech-
nique is a nice alternative.

A parametric bootstrap method for investigating the limiting distribution of
7 was suggested by Pham and Nguyen(1991). We briefly review a parametric
bootstrap procedure. Let fy, (t) be a pdf parametrized by 6, a parameter vector
of our interest. Firstly we estimate ,, using the given data. From the distribution
fs. (t) with 6., plugged in, we generate a bootstrap sample T, ¢ = 1,2, ,n .
Finally a bootstrap version én* is computed using resampled T7¥, ¢ = 1,2,--- ,n.

According to Pham and Nguyen(1990) the following two conditions

Dl: hmn—)oo Pen[TO € [B;'L(Tl*3 ,T;),B;:(Tf, 7T;;)] = 1:

" P
Dy: Llog[Ts — By(Tf,-+- , T2)] =3 0

guarantee T, — T, % 0, where @% denotes the convergence in £y, probability
and 7, 18 used instead of 79 to denote the dependence on n. This fact is similar
to Lemma 1 on the strong consistency of 7.

We are interested in the consistency of the bootstrap distribution of n(%, —
Tn). Let n(F, — 7,) be represented by a functional U, (71, -- ,Tn, ), that is,

n('ﬁn - 'Tn) = U’I'L(Tla T aTnaTn)'

Then the distribution of bootstrapped estimator n(#f —7,) is identical to that
of Upn(TY, Ty, -+ , Ty, 7n)-

Using the asymptotic property discussed before the conditional law of U, (77,75,
-, T% 7,) converges weakly to the law of R; for almost all sample sequences

T1,Ty,--- with Ry defined in Theorem 3.1.

Theorem 4.1. If we take B;z(Tf,"' ,T) and B;;(Tl*,--- ,IT%) appropriately to
satisfy Dy and Dg, we obtain the limiting distribution of 7}

n(7t - 1) - Ry,
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where -2 denotes the convergence in distribution, and I is the index defined in
Theorem 1.

The empirical probability distribution of n(f; — 7), repeated B times, can
be used to approximate the upper(or lower) a—point of the limiting distribution.
A bootstrap counterpart for the LRT based confidence region is not treated in
this paper because of its heavy computational burden in perfoming parametric
bootstrap.

4.2. Estimation Under Random Censoring

For the randomly censored data (X1,d1),--- ,(Xn,0n), where the censoring
indicator §; equals 0 or 1 according as whether the ith survival time is censored
or not, the likelihood function up to a constant is of the form

T

[ @) fiemn)

i=1

The MLE §; is the same except that 7 and n in (2.6) are replaced by the corre-
sponding number of uncensored observations. Similarly the likelihood equations
for ; are given by

1 1 1
Z & (— -HogTi) e Z TMlogTi — (n—71)=—7"logT =0,
Ti<r ! 1 Ti<r A

1 1 1
Z d; (— +1ogTi) - = Z T logT; + (n—r)—7"logT=0.
T.>7 T2 BZ Ti>T '82

We also note that these are very similar to the equations in (2.8) and the
iterative method can be used to solve them. Under moderate censorship the
consistency and other properties for the complete data can be applied. We may
refer to Matthews and Farewell(1982), and Loader(1991) for the discussions on
this point.

4.3. A Practical Example

We explain the proposed procedure through a real data set of survival times
for 184 persons who actually received heart transplant, which was obtained from
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the Stanford Heart Transplantation Program (Miller and Halpern, 1982). Among
n = 184 persons 65 patients were still alive until the end of experiment and so
they are assumed to be censored. For computational convenience the original
data is scaled by dividing with 100.

The plot of log A(t) against log? depicted in Figure 4.1 seems to be approx-
imately piecewise linear with different slopes before and after one specific time
point. This fact justifies the validity of hazard rate change-point model given in
(2.3).

We find the change-point estimator by varying over the failure times which
maximizing the log-likelihood after 5% truncation at both ends of the ordered
values. This is the rule suggested by Worsley(1986) and Loader(1991). The
estimated change-point is 7 = 0.68 for the given data set and we comment that
this estimate is the same whether we take 5% or 10% truncation. Given the
estimated change-point ¥ = 0.68 the other parameters 4; and G; are routinely
obtained by iterative method solving equations (2.6) and (2.8) simultaneously.
The MLEs 4; = 1.0178, 49 = 0.6822 of shape parameters before and after the
estimated change-point are a little more different than assumed to be a common
value. This fact may be one reason to consider a more general model with no
assumption on common shape parameters. We may expect a great improvement
over the constant hazard rate model assuming v; = v, = 1. We also note that the
MLEs 51 = 2.9562, [ = 7.2020 of scale parameters are greatly different from
each other. The estimated hazard rate function of (2.3) obtained by substituting
the estimated parameters is also depicted in Figure 4.1.

To perform a parametric bootstrap using the estimated parameter values we
firstly generate uniform random variates via IMSL(International Mathematical
and Statistical Libraries) on Workstation and then transform them to Weibull
random variates. We also assumed uniformly distributed censoring times. From
B = 5,000 bootstrap iterations we find a 95% confidence interval of T to be
(0.6803, 0.7555), and this interval approximately coincides with the LRT based
confidence region consisting of two intervals (0.66, 0.67) and (0.68, 0.751), which
was found by Loader(1991) using large deviation technique under the constant
hazard rate model.

On the other hand if we assume v = v = 7v(a common value) in (2.3),
the MLEs of the unknown parameters are 7 = 0.68, ¥ = 0.792, Gy = 2.4866,
Bg = 10.1471. We note that the common shape parameter estimate is greately
different from 4; = 1.0178 and 42 = 0.6822, which are obtained under more
general assumption on the hazard rate model with no commeon shapes. And the
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Figure 4.1: Cumulative hazard in log scales and hazard rate against time

95% confidence interval of T is (0.4265, 0.8832). These results are quitely different
from those obtained under the assumption of no common shape parameters.

5. SUMMARY AND FURTHER STUDIES

Under the change-point hazard rate model corresponding to the Weibull dis-
tribution the MLE of change-point and other parameters were considered. In
particular the MLEs of shape parameters cannot be expressed in explicit forms
under the assumed model, and hence an iterative method of Newton-Raphson
algorithm was used to simultaneously solve the likelihood equations. We also in-
vestigated the consistency and its limiting distribution of change-pont estimator
by checking the regularity conditions of Chernoff and Rubin(1956).

The limiting distribution of change-point estimator is complicated and non-
normal, and hence we cannot directly use it in practical applications. A para-
metric bootstrap method was suggested to approximate the limiting distribution
and further we used this one to find a confidence interval of change-point. We
explained the proposed procedure through a practical example of the well-known
Stanford heart transplant data set.
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We haven’t considered an appropriate goodness-of-fit criterion to compare
two models, i.e., a common shape model versus unequal shapes model. This may
also be an interesting topic in the data analytic aspect. Finally, we comment on
the computational intensity incurred from both Newton-Raphson iterations and
bootstrapping. A modified estimation procedure instead of MLE will be a nice
alternative to tackle this problem. Generalizations to other change-point models
such as Cox’s regression model are remained as further researches.
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