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Abstract : The choice of input distribution in quantitative risk assessments modeling is of great

importance to get unbiased overall estimates, although it is difficult to characterize them in situations

where data available are too sparse or small. The present study is particularly concerned with

accommodation of uncertainties commonly encountered in the practice of modeling. The authors applied

parametric and non-parametric bootstrap simulation methods which consist of re-sampling with

replacement, in together with the classical Student-t statistics based on the normal distribution. The

implications of these methods were demonstrated through an empirical analysis of trade volume from

the amount of chicken and pork meat imported to Korea during the period of 1998-2005. The results

of bootstrap method were comparable to the classical techniques, indicating that bootstrap can be an

alternative approach in a specific context of trade volume. We also illustrated on what extent the bias

corrected and accelerated non-parametric bootstrap method produces different estimate of interest, as

compared by non-parametric bootstrap method. 
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Introduction

If all the information that is critical to any

probabilistic model is obtainable, then the outputs

would not be subject to uncertainty. Instead, some input

parameters even in this model are typically assigned

a probability with uncertainty. In fact, researchers often

confront uncertainties in many phase of modeling

works. These can be attributed to structural uncertainty

such as the specific problems of interest and scenario

specification and model uncertainty such as parameters

in the model, lack of representativeness at the time

where a given task is to be performed, lack of

reliability of empirical data, disagreement of experts,

an even non-existence, or a combination of these [11,

15]. Furthermore, some inputs in the model are

estimated using relatively small sets of sampled data,

resulting in uncertainty in the estimates due to

sampling error. Consequently these uncertainties in the

simulation model may result in unrealistic risk

estimates. In this situation, parametric statistical

methods whose characteristics are defined by one or

more parameters or non-parametric techniques that do

not assume a particular family of probability distributions

are commonly used.

In the absence of any accurate knowledge of a

population’s distribution of interest, the distribution of

a random sample taken from that population can be

a guide to the distribution in that population [8, 10,

11]. Quantification of sampling error in a sample may

be done using classical statistical techniques or

numerical simulation methods [19]. The bootstrap

method belongs to latter category and essentially

employs re-sampling to model the unknown variables.

This technique is increasingly being employed in the

medical literature such as disease surveillance and

modeling [9, 14, 18], reproductive performance [4],

vaccine potency testing [1], molecular biology [13] as

well as in diverse fields including economics [12],

geology [3], and engineering [2].
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Where extensive data are not available, researchers

try to use a variety of different distributions to

approximate their data, often leading to substantial

discrepancy in estimates and subsequent choice of

distribution. In this respect, the aim of this study was

to employ bootstrap method to quantify uncertainty of

risk especially when only limited information is

available. The authors used trade volume of chicken

and pork meats officially imported during a specified

period as an uncertainty parameter. This statistic can

be considered highly variable that may be associated

with changes in disease factors in exporting country,

animal, seasonal or factors regarding with trade.

Materials and Methods

Data

The total amount of chilled or frozen chicken and

pork meat imported in Korea was obtained from the

National Veterinary Research and Quarantine Services

and is shown in Table 1. 

Data fitting

A variety of different models were fitted for

observed data. Of these, the best 3 models (model 1-

3) were presented, and the goodness-of-fit was tested

by Anderson-Darling (AD) or Kolmogorov-Smirnov

(KS) test.

Bootstrap model

The details of the bootstrap simulation procedures

have been well chronicled by Efron [5, 6] and others

[7]. Trade volume (bootstrap sample) was generated by

iteration from the observed data to construct distribution

for the sample. Sampling from that constructed

distribution is repeated a large number of times until

a stable distribution can be obtained. Non-parametric

bootstrap models with no assumptions (RiskDuniform

distribution) about the parent distribution and

parametric bootstrap models (RiskNormal distribution)

were constructed using Microsoft Excel (Microsoft,

USA) and its add-in software, @Risk (Palisade, USA).

Classical mean statistics from an assumed normal

distribution were also presented using a Student-t

distribution with n-1 (n = sample size) degree of

freedom (df): Student (n-1)*SD/sqrt (mean), where SD

and sqrt means standard deviation and square root,

respectively. To consider the bias between the estimates

and the unknown true value and to improve the

performance of bootstrap by transforming the cumulative

percentiles, bias corrected and accelerated (BCa)

proposed by Effron and Tibshirani [7] was used. The

bootstrap uncertainty distributions were obtained from

1,000 iterations. For BCa method, 3,000 and 5,000

iterations were run to estimate the mean trade volume

for chicken and pork meat data, respectively. 

Results

As shown in Table 1, total amounts of imported

chicken and pork meat were found to be highly

variable by year. By fitting the raw data using @Risk

Bestfit module, extreme value and exponential

distribution were found to be the best fit for chicken

and pork meat data, respectively. Two other possible

distributions are presented for comparison purpose

(Table 2). All distributions were satisfied with

goodness-of-fit assessed by AD or KS test. The

skewness was ranged 0-1.14 for chicken meat and 2.0-

18.9 for pork meat data. The kurtosis showed even

wider range.

In comparison with the classical models (range:

1.13 × 108 for chicken and 2.15 × 108 for pork meat)

both bootstrap methods provided a narrower range of

mean trade volume for chicken (range: 6.01 × 107 and

6.43 × 107 for parametric and non-parametric, respectively)

and pork meat data (range: 1.02 × 108 and 8.96 × 107

for parametric and non-parametric, respectively) (Fig.

1). The results from the non-parametric bootstrap and

BCa models are shown in Fig. 2.

Table 1. Amount (kg) of chilled or frozen chicken and pork

meat officially imported to Korea for human

consumption, during the period of 1998-2005

Year Chicken Pork

1998 11,753,000 55,683,000

1999 45,977,000 142,256,000

2000 66,335,000 96,645,000

2001 83,738,000 51,098,000

2002 97,324,000 45,184,919

2003 81,920,000 60,789,627

2004 23,556,000 76,793,744

2005 52,766,000 173,598,000
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Discussion

In a view of the fact that risk assessment is a tool

aimed at predicting the probability of an outcome of

a particular event by combining successive conditional

probability, the quantification of uncertainty of a true

but unknown distribution of values has become an

essential part in risk assessment modeling [11]. This

is quite important in a model that some inputs are

assigned a probability distribution with inherent

Table 2. Summary statistics fitted for chicken and pork meat data

Statistic GOF2

Model1 Mean SD Skewness Kurtosis S1 S2

[For chicken meat]

Model 1 59,116,457 34,616,188 1.14 5.40 > 0.25 > 0.10

Model 2 59,151,954 30,927,538 0.00 4.20 > 0.25 > 0.10

Model 3 57,921,125 30,112,959 0.00 3.00 > 0.25 > 0.15

[For pork meat]

Model 1 82,434,647 42,571,117 2.00 9.00 > 0.25 >0.25

Model 2 87,756,036 63,064,005 3.97 29.3 NA3 NA

Model 3 99,032,861 127,254,722 18.9 2141.7 NA NA

1For chicken data, model 1, 2, and 3 represent extreme value, logistic and normal distribution, respectively. For pork data,

model 1, 2, and 3 represent exponential, inverse Gaussian, and lognormal distribution, respectively. 

2GOF represents goodness-of-fit of the model, assessed by Anderson-Darling (S1) or Kolmogorov-Smirnov (S2) statistic. 
3NA, not available.

Fig. 1. Results of mean statistics by the parametric and non-

parametric bootstrap model and classical method for

chicken (top) and pork meat (bottom) data.

Fig. 2. Comparison of results from the non-parametric

bootstrap (BS) and bias corrected and accelerated BS

models for chicken (top) and pork meat (bottom) data.
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uncertainty. In addition, since the uncertain probability

assigned to each step in a scenario pathway may have

a large impact on the final estimate as a multiplicative

effect and consequently on the conclusion drawn, it is

essential to assure high credibility in it. As seen in our

data, the degree of normality cannot be assumed in

terms of the skewness and kurtosis, although three

distributions were satisfied with goodness-of-fit by AD

or KS test. Non-normality was particularly significant

for pork meat data, indicating that classical approach

could provide biased estimates and consequently over

or under-estimate of final probability of interest. Where

there are plentiful and representative data a probability

distribution can be applied from either the parameters,

which are derived by fitting empirical data to a

theoretical distribution using parametric techniques, or

directly from the data using non-parametric techniques

[16]. In contrast, where data are very sparse the

parameters used to specify a distribution is often

subjected to be uncertain. In such cases the first choice

is to use classical statistical techniques if the basic

assumptions are correct. 

However it is often difficult to appreciate the degree

of inaccuracy even by using approximation. Thus,

bootstrap simulation method could be applied as an

alternative when other classical methods are not

available. A key idea of this approach is that sampling

with replacement should be repeated by randomly re-

sampling a given set of data and computing the statistic

of interest for each sample. The resulting set of values,

bootstrap distribution provides an approximate sampling

distribution for the statistic. This method was known

to be useful especially when the data is small or non-

Gaussian, and the confidence intervals calculated by

using the bootstrap re-sampling technique are not

subject to a restriction of symmetry, as is the Student-

t distribution, making them much more versatile [10,

17, 19]. 

The result of parametric bootstrap approach together

with that from applying the classical statistics method

looks incidentally very similar to the non-parametric

distribution (Fig. 1). Because of very small set of data

in this study it is not easy to evaluate relative utility

of these methods. However, bootstrap method was

found to have narrower range compared to the classical

method which was based on an assumed normal

distribution to estimate mean trade volume. This result

may suggest that bootstrap method provides an

alternative technique to assess the uncertainty about a

parameter where classical statistics is not appropriate

without recourse to determining a prior [20]. On the

other hand, the bias defined as difference between the

estimate using the original data and the estimate using

the bootstrap sample is inevitable in predicting works.

Like many other methods, the bootstrap also tends to

underestimate the uncertainty and thus bias corrective

measures such as BCa were proposed by Effron and

Tibshirani [7]. This method is essentially assumes that

for some unknown transformation, bias correction and

skewness correction, the transformed estimator is

normally distributed. This method is known to be the

best correction procedure for overcoming the weakness

of the bootstrap [20]. As seen in Fig. 2, the difference

between the uncorrected and corrected distributions

was relatively small for chicken, while there are some

differences for pork meat data. This is in part due to

the mean illustrating in this analysis is the most stable

statistic for a given amount of data, and in part because

the range of raw data was wider in pork meat

(128,413,081) than chicken meat (85,571,000), although

coefficient of variation was not quite different (53.5%

vs. 51.9%).

Based on the findings in this study the authors

conclude that when quantifying uncertainty point

estimates may be different depending on the methods

employed, indicating that more attention should be paid

to the data underlying distributional choices. The

bootstrap techniques in together with the classical

parametric methods can be an alternative means, where

appropriate. As far as possible perspectives are

concerned, it would be worth while to investigate to

what extent our approaches apply to other data sets

with different characteristics. Another interesting

development concerns the comparison between

estimations of BCa method with the corresponding

ones derived by means of other classical procedures

assuming different fitting distributions. Lastly Bayesian

bootstrap models need to be developed to improve an

estimate to characterize a distribution.
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