• Title/Summary/Keyword: parameter visualization

Search Result 89, Processing Time 0.023 seconds

Quadrotor wake characteristics according to the change of the rotor separation distance (로터 간격에 따른 쿼드로터의 후류특성 변화 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2019
  • Rotor wake interaction must be considered to understand the quadrotor flight, and the rotor separation distance is an important parameter that affects the rotor wake interaction. In this study, the wake characteristics were investigated with varying the rotor separation distance. The velocity field in the rotor wake was measured using digital PIV for hovering mode at Re = 34,000, and the wake boundaries from the inner and outer rotor tips were quantitatively compared with varying the rotor separation distance. The symmetric rotor-tip vortex shedding about the rotor axis was found at a large rotor separation distance. However, the wake boundary became more asymmetric about the rotor axis with decreasing the rotor separation distance. At the minimum rotor separation distance, in particular, a faster vortex decay was observed due to a strong vortex interaction between adjacent rotors.

Vortex breakdown in an axisymmetric circular cylinder with rotating cones (회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구)

  • Kim, J.W.;Eum, Ch.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF

Investigation of Aggregate Size Effect on Cracking Behavior in Concrete Fracture Test using Mechanoluminescent Paint (압광 페인트를 이용한 콘크리트 파괴시험시 골재크기가 균열성상에 미치는 영향조사)

  • Lee, Chang Joon;Kim, Wha-Jung;Kim, Ji-Sik;Jeon, Ki-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • In order to capture the fast crack propagation in an unmanipulated concrete fracture test, we employed mechanoluminascent(ML) material, which emits visible light when stressed, as a crack visualization tool. Three-point bending fracture test setup, a paint type ML material and a high speed camera were used to capture the images of fast moving cracks. The maximum size of coarse aggregates of concrete was used as an experimental parameter. The crack images, loading, and crack mouth opening displacement were successfully recorded as a function of time elapsed. From the test results, several interesting cracking behavior in the unmanipulated fracture test was observed in such that (1) the crack moves fast while the load is slowly decreased after the maximum loading, and (2) the crack in concrete with larger coarse aggregates moves faster than the others.

3-D Imaging in a Chaotic Micromixer Using Confocal Laser Scanning Microscopy (CLSM) (공초점 현미경을 이용한 마이크로믹서 내부의 3차원 이미지화)

  • Kim, Hyun-Dong;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.96-101
    • /
    • 2006
  • 3-D visualization using confocal laser scanning microscopy (CLSM) in a chaotic micromixer was performed as a reproduction experiment and the feasibility of 3-0 imaging technique in the microscale was confirmed. For diagonal micromixer (DM) and two types of staggered herringbone micromixers (SHM) designed by Whitesides et al., to verify the evolution of mixing, cross sectional images are reconstructed at the end of every cycle. In a DM, clockwise rotational flow motion generated by diagonal ridges placed on the floor of micromixer is observed and this motion makes the fluid commingle. On the contrary, there are two rotational flow structures in the SHM and the centers of rotation exchange their position each other every half cycle because of the V shape of ridges varying their orientation every half cycle. Local rotational flow and local extensional flow generated by the complicate ridge pattern make the flow be chaotic and accelerate the mixing of fluid. The dominant parameter that influences on the mixing characteristic of SHM is not the length of micromixer but the number of ridges under the same flow configurations.

  • PDF

The Channel Wall Confinement Effect on Periodic Cryogenic Cavitation from the Plano-convex Foil

  • Ito, Yutaka;Nagayama, Tsukasa;Yamauchi, Hiroshi;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.383-390
    • /
    • 2008
  • Flow pattern of cavitation around a plano-convex foil, whose shape is similar to the inducer impeller of the turbo-pumps in the liquid fuel rocket engine, was observed by using a cryogenic cavitation tunnel of blowdown type for visualization. Working fluids were liquid nitrogen and hot water. The parameter range to be varied was between 20 and 60mm for channel width, 20 and 60mm for foil chord, -1.8 and 13.2 for cavitation number, 3.7 and 19.5m/sec for averaged inlet velocity, $8.5{\times}10^4$ and $1.5{\times}10^6$ for Reynolds number, -8 and $8^{\circ}$ for angle of attack, respectively. Especially at positive angle of attack, namely, convex surface being downstream, the whole cavity or a part of the cavity on the foil surface departs periodically. Periodic cavitation occurs only in case of smaller cavitation size than twice foil chord. Cavitation thickness and length in 20mm wide channel are larger than those in 60mm due to the wall confinement effect. Therefore, periodic cavitation in 60mm wide channel easily occurs than that in 20mm. These results suggest that the periodic cavitation is controlled by not only the hydrodynamic effect of vortex shedding but also the channel wall confinement effect.

  • PDF

Study on Water Repellency of PTFE Surface Treated by Plasma Etching (플라즈마 에칭 처리된 PTFE 표면의 발수성 연구)

  • Kang, Hyo Min;Kim, Jaehyung;Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2021
  • Many plants and animals in nature have superhydrophobic surfaces. This superhydrophobic surface has various properties such as self-cleaning, moisture collection, and anti-icing. In this study, the superhydrophobic properties of PTFE surface were treated by plasma etching. There were four important factors that changed the surface properties. Micro-sized protrusions were formed by plasma etching. The most influential parameter was RF Power. The contact angle of the pristine PTFE surface was about 113.8°. The maximum contact angle of the surface after plasma treatment with optimized parameters was about 168.1°. In this case, the sliding angle was quite small about 1°. These properties made it possible to remove droplets easily from the surface. To verify the self-cleaning effect of the surface, graphite was used to contaminate the surface and remove it with water droplets. Graphite particles were easily removed from the optimized surface compared to the pristine surface. As a result, a surface having water repellency and self-cleaning effects could be produced with optimized plasma etching parameters.

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

The Experimental Study of Liquid Phase Mixing Mechanism of Split Triplet Impinging Spray (분리 충돌형 분사기의 액상 혼합 메커니즘에 관한 실험적 고찰)

  • 이성웅;조용호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.18-23
    • /
    • 2002
  • Liquid phase mixing of impinging injector is a resultant byproduct from the momentum exchange between a pair of impinging jets and penetration of opponent jet. Principal aim of the present study is revealing the liquid phase mixing mechanism of split triplet impinging injection sprays, and thus extending our understanding on this particular injection element. Overall mixing extent is estimated from patternation tests by the use of purified tap water and kerosene to simulate the real propellant components, respectively, and with the liquid jet momentum ratio, a controlling mixing parameter, in the range of 0.5 to 6.0. Emphasis is placed on the effect of liquid sheet superposition and disintegration, and the results with detailed spray visualization revealed the fact that superposed liquid sheet disintegration is the main pathway of liquid phase mixing of split triplet impinging injector to yield enhanced mixing qualities.

  • PDF