Browse > Article
http://dx.doi.org/10.1016/j.net.2022.05.029

Particle loading as a design parameter for composite radiation shielding  

Baumann, N. (University of Arizona)
Diaz, K. Marquez (University of Arizona)
Simmons-Potter, K. (University of Arizona)
Potter, B.G. Jr. (University of Arizona)
Bucay, J. (Raytheon Technologies)
Publication Information
Nuclear Engineering and Technology / v.54, no.10, 2022 , pp. 3855-3863 More about this Journal
Abstract
An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.
Keywords
Radiation shielding; Monte carlo simulation; Additive manufacturing; Polymer composite;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Wright, Shielding physics list description. https://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/shielding/physlistdoc.html, 2012. (Accessed 20 December 2021).
2 X. Li, D. Warden, Y. Bayazitoglu, Analysis to evaluate multilayer shielding of galactic cosmic rays, J. Thermophys. Heat Tran. 32 (2018) 525-531, https://doi.org/10.2514/1.T5292.   DOI
3 C.M. Shemelya, A. Rivera, A.T. Perez, C. Rocha, M. Liang, X. Yu, C. Kief, D. Alexander, J. Stegeman, H. Xin, R.B. Wicker, E. MacDonald, D.A. Roberson, Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten-polycarbonate polymer matrix composite for space-based applications, J. Electron. Mater. 44 (2015) 2598-2607, https://doi.org/10.1007/s11664-015-3687-7.   DOI
4 A.M. El-Khatib, M.S. Hamada, M.T. Alabsy, Y.M. Youssef, M.A. Elzaher, M.S. Badawi, M. Fayez-Hassan, Y.N. Kopatch, I.N. Ruskov, M.I. Abbas, Fast and thermal neutrons attenuation through micro-sized and nano-sized CdO reinforced HDPE composites, Radiat. Phys. Chem. 180 (2021), 109245, https://doi.org/10.1016/j.radphyschem.2020.109245.   DOI
5 M. Nabipour, B. Akhoundi, A. Bagheri Saed, Manufacturing of polymer/metal composites by fused deposition modeling process with polyethylene, J. Appl. Polym. Sci. 48717 (2019) 1-9, https://doi.org/10.1002/app.48717.   DOI
6 J. Wrobel, R. Hoyt, J. Cushing, M. Jaster, N. Voronka, J. Slostad, L. Paritsky, Versatile structural radiation shielding and thermal insulation through additive manufacturing, 27th Annu. AIAA/USU Conf. Small Satell. (2013) 1-9. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2926&context=smallsat.
7 F. Akman, I. Ozkan, M.R. Kacal, H. Polat, S.A.M. Issa, H.O. Tekin, O. Agar, Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites, Appl. Radiat. Isot. 167 (2021), 109470, https://doi.org/10.1016/j.apradiso.2020.109470.   DOI
8 Y. Wu, Y. Cao, Y. Wu, D. Li, Neutron shielding performance of 3D-Printed boron carbide PEEK composites, Materials 13 (2020), https://doi.org/10.3390/ma13102314.   DOI
9 H.O. Tekin, F. Akman, S.A.M. Issa, M.R. Kacal, O. Kilicoglu, H. Polat, Two-step investigation on fabrication and characterization of iron-reinforced novel composite materials for nuclear-radiation shielding applications, J. Phys. Chem. Solid. 146 (2020), 109604, https://doi.org/10.1016/j.jpcs.2020.109604.   DOI
10 Q. Li, Q. Wei, W. Zheng, Y. Zheng, N. Okosi, Z. Wang, M. Su, Enhanced radiation shielding with conformal light-weight nanoparticle-polymer composite, ACS Appl. Mater. Interfaces 10 (2018) 35510-35515, https://doi.org/10.1021/acsami.8b10600.   DOI
11 X. Zhang, X. Zhang, S. Guo, Simple approach to developing high-efficiency neutron shielding composites, Polym. Eng. Sci. 59 (2019) E348-E355, https://doi.org/10.1002/pen.25065.   DOI
12 M. DeVanzo, R.B. Hayes, Ionizing radiation shielding properties of metal oxide impregnated conformal coatings, Radiat. Phys. Chem. 171 (2020), 108685, https://doi.org/10.1016/j.radphyschem.2020.108685.   DOI
13 S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.   DOI
14 J. Liu, GEARS [source code], https://github.com/jintonic/gears, 2021.
15 W.C. Fan, C.R. Drumm, G.J. Scrivner, Shielding considerations for satellite microelectronics, IEEE Trans. Nucl. Sci. 43 (1996) 2790e2796. https://ieeexplore.ieee.org/ielx1/23/12152/00556868.pdf?tp=&arnumber=556868&isnumber=12152.
16 G. Hu, H. Hu, Q. Yang, B. Yu, W. Sun, Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and g-rays, Nucl. Eng. Technol. 52 (2020) 178-184, https://doi.org/10.1016/j.net.2019.07.016.   DOI
17 M.A. Ryder, D.A. Lados, G.S. Iannacchione, A.M. Peterson, Fabrication and properties of novel polymer-metal composites using fused deposition modeling, Compos. Sci. Technol. 158 (2018) 43-50, https://doi.org/10.1016/j.compscitech.2018.01.049.   DOI
18 S. Woosley, N. Abuali Galehdari, A. Kelkar, S. Aravamudhan, Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding, J. Mater. Res. 33 (2018) 3657-3664, https://doi.org/10.1557/jmr.2018.316.   DOI
19 M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, M.A. Zucker, K. Olsen, XCOM: photon cross section database, 2010. //dx.doi.org/10.18434/T48G6X.   DOI
20 R. Baumann, K. Kruckmeyer, Radiation Handbook for Electronics: a compendium of radiation effects topics for space, industrial and terrestrial applications. www.ti.com/radbook, 2019.
21 Y. Chen, G. Reeves, R.H.W. Friedel, M.F. Thomsen, M. Looper, D. Evans, J. Sauvaud, LEEM: a new empirical model of radiation-belt electrons in the low-Earth-orbit region, J. Geophys. Res. Sp. Phys. 117 (2012) n/a-n/a. doi.org/10.1029/2012JA017941.   DOI
22 GEANT4 geometry from text file version 1.0(n.d.), //geant4.web.cern.ch/sites/default/files/geant4/collaboration/working_groups/geometry/docs/textgeom/textgeom.pdf. (Accessed 1 December 2021).
23 M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, Stopping-power & range tables for electrons, protons, and Helium ions, 2017. //dx.doi.org/10.18434/T4NC7P.   DOI
24 A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects, Second, Oxford University Press, New York, 2002.
25 J. Park, K.W. Min, H. Seo, E. Kim, K. Ryu, J. Sohn, J. Seon, J. Yoo, S. Lee, B. Kress, J. Lee, C. Woo, D. Lee, Multi-year statistics of LEO energetic electrons as observed by the Korean NextSat-1, Space Weather 19 (2021), https://doi.org/10.1029/2021SW002787.   DOI
26 C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, E.J. Lavernia, Additive manufacturing of functionally graded materials: a review, Mater. Sci. Eng. 764 (2019), 138209, https://doi.org/10.1016/j.msea.2019.138209.   DOI
27 Z.D. Whetstone, K.J. Kearfott, Layered shielding design for an active neutron interrogation system, Radiat. Phys. Chem. 125 (2016) 69-74, https://doi.org/10.1016/j.radphyschem.2016.03.018.   DOI
28 T. Gutu, Assessment of Polybenzimidazole Polymer Matrix Composite Constructed as a Graded-Z Laminate for Use as a Structural Radiation Shield for Cislunar Habitation Modules, University of Massachusetts Lowell, 2020.
29 CERN, Credit/citations for data files distributed with Geant4 (n.d.), https://geant4.web.cern.ch/support/data_files_citations. (Accessed 15 April 2022).
30 R. Brun, F. Rademakers, Root - an object oriented data analysis framework, in: Proc. AIHENP'96 Work., 1996, pp. 81-86, https://doi.org/10.5281/zenodo.3895860. Lausanne.   DOI
31 H.O. Tekin, M.R. Kacal, S.A.M. Issa, H. Polat, G. Susoy, F. Akman, O. Kilicoglu, V.H. Gillette, Sodium dodecatungstophosphate hydrate-filled polymer composites for nuclear radiation shielding, Mater. Chem. Phys. 256 (2020), 123667, https://doi.org/10.1016/j.matchemphys.2020.123667.   DOI
32 M.R. Kacal, H. Polat, M. Oltulu, F. Akman, O. Agar, H.O. Tekin, Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study, Appl. Phys. Mater. Sci. Process 126 (2020) 1-15, https://doi.org/10.1007/s00339-020-3382-2.   DOI
33 T. Koi, G. Folger, Shielding.cc [source code], https://github.com/Geant4/geant4/blob/master/source/physics_lists/lists/src/Shielding.cc, 2010. (Accessed 10 April 2022).
34 A. Canel, H. Korkut, T. Korkut, Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials, Radiat. Phys. Chem. 158 (2019) 13-16, https://doi.org/10.1016/j.radphyschem.2019.01.005.   DOI
35 M. Arif Sazali, N.K. Alang Md Rashid, K. Hamzah, A review on multilayer radiation shielding, IOP Conf. Ser. Mater. Sci. Eng. 555 (2019), https://doi.org/10.1088/1757-899X/555/1/012008.   DOI
36 G. Almisned, F. Akman, W.S. Abushanab, H.O. Tekin, M.R. Kacal, S.A.M. Issa, H. Polat, M. Oltulu, A. Ene, H.M.H. Zakaly, Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (rpe) and shielding properties for alpha, proton, neutron, and gamma radiations, Polymers 13 (2021), https://doi.org/10.3390/polym13183157.   DOI