1 |
Xie, L., Tang, Z., Jiang, L., Breedveld, V., & Hess, D. W. (2015). Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surface and coatings technology, 281, 125-132.
DOI
|
2 |
Mohamed, A. M., Abdullah, A. M., & Younan, N. A. (2015). Corrosion behavior of superhydrophobic surfaces: A review. Arabian journal of chemistry, 8(6), 749-765.
DOI
|
3 |
Balu, B., Breedveld, V., & Hess, D. W. (2008). Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing. Langmuir, 24(9), 4785-4790.
DOI
|
4 |
Samaha, M. A., Tafreshi, H. V., & Gad-el-Hak, M. (2012). Superhydrophobic surfaces: From the lotus leaf to the submarine. Comptes Rendus Mecanique, 340(1-2), 18-34.
DOI
|
5 |
Kwok, D. Y. H. (1998). Contact angles and surface energetics (Doctoral dissertation).
|
6 |
Blossey, R. (2003). Self-cleaning surfaces-virtual realities. Nature materials, 2(5), 301-306.
DOI
|
7 |
Cassie, A. B. D. (1948). Contact angles. Discussions of the Faraday society, 3, 11-16.
DOI
|
8 |
Kreder, M. J., Alvarenga, J., Kim, P., & Aizenberg, J. (2016). Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews Materials, 1(1), 1-15.
|
9 |
Cansoy, C. E., Erbil, H. Y., Akar, O., & Akin, T. (2011). Effect of pattern size and geometry on the use of Cassie-Baxter equation for superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386(1-3), 116-124.
DOI
|
10 |
Wang, S., Yang, Z., Gong, G., Wang, J., Wu, J., Yang, S., & Jiang, L. (2016). Icephobicity of penguins Spheniscus Humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. The Journal of Physical Chemistry C, 120(29), 15923-15929.
DOI
|
11 |
Dong, H., Cheng, M., Zhang, Y., Wei, H., & Shi, F. (2013). Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A, 1(19), 5886-5891.
DOI
|
12 |
Rezayi, T., & Entezari, M. H. (2016). Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition. Journal of Colloid and Interface Science, 463, 37-45.
DOI
|
13 |
Lakshmi, R. V., Bharathidasan, T., Bera, P., & Basu, B.J. (2012). Fabrication of superhydrophobic and oleophobic sol-gel nanocomposite coating. Surface and Coatings Technology, 206(19-20), 3888-3894.
DOI
|
14 |
Ma, M., Mao, Y., Gupta, M., Gleason, K. K., & Rutledge, G. C. (2005). Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 38(23), 9742-9748.
DOI
|
15 |
Peng, C.-W., Chang, K.-C., Weng, C.-J., Lai, M.-C., Hsu, C.-H., Hsu, S.-C., Hsu, Y.-Y., Hung, W.-I., Wei, Y., & Yeh, J. M. (2013). Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochimica Acta, 95, 192-199.
DOI
|
16 |
Lee, W. K., Engel, C. J., Huntington, M. D., Hu, J., & Odom, T. W. (2015). Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano letters, 15(8), 5624-5629.
DOI
|