DOI QR코드

DOI QR Code

한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula

  • 황재민 (한국성서대학교 컴퓨터소프트웨어학과) ;
  • 임지영 (한국성서대학교 컴퓨터소프트웨어학과) ;
  • 정해덕 (한국성서대학교 컴퓨터소프트웨어학과)
  • 투고 : 2023.08.03
  • 심사 : 2023.11.07
  • 발행 : 2023.11.30

초록

대한민국은 지진 판의 경계로부터 멀리 떨어진 지역에 있으며, 이러한 지역에서 발생하는 판 내부 지진은 판 경계부 지진과 비교하면 일반적으로 규모가 작고 발생빈도도 낮다. 그럼에도 불구하고 과거 2년부터 1904년 사이 한반도에서 발생했던 지진과 최근 한반도 지진을 관측한 이래에 발생한 지진을 조사 및 분석한 결과 진도 규모 9까지 이르는 것으로 나타났다. 본 논문에서는 한반도에서 발생한 지진과 통계적 자기 유사성과의 관계를 분석하기 위해서 국립기상연구소에서 발표한 「한반도 역사지진 기록 (2년~1904년)」을 이용한다. 또한 본 논문을 통해서 해결한 문제는 한반도에서 발생한 지진데이터와 통계적 자기 유사성과 시각화의 관계 연구를 처음으로 규명하였으며, 그 결과 한반도 지진의 자기 유사성 정도를 판단하는 3가지 정량적인 추정방법으로 측정한 결과 자기 유사성 파라메터 H 값(0.5 < H < 1)이 0.8이상으로 자기 유사성 정도가 높은 것으로 나타났다. 그리고 그래프의 시각화를 통해 지진이 어느 지역에서 많이 발생했는지를 쉽게 파악할 수 있고, 향후 지진 발생시 피해를 예측하고 재산과 인명 피해를 최소화할 수 있는 예측 시스템 개발과 지진 데이터 분석 및 모델링 연구에 활용될 수 있을 것으로 보인다. 뿐만아니라 본 연구결과를 토대로 자기 유사성 프로세스는 지진활동의 패턴과 통계적 특성을 이해하고, 유사한 지진 사건을 그룹화하고 분류하는데 도움을 줄 수 있으며, 지진 활동에 대한 예측, 지진 위험 평가 및 지진 공학 관련 연구에 활용될 것으로 예상된다.

The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

키워드

참고문헌

  1. J.-G. Kim, "About the causes of earthquakes and tsunamis," Magazine of the Korean Society of Hazard Mitigation, Vol.5, No.1, pp.8-13, 2005.
  2. 「9.12지진백서」, 국민안전처 재난관리실, pp.31, 2017.
  3. H. Choi, "Strong Ground motion simulation at seismic stations of metropolises in South Korea by scenario earthquake on the causative fault of the 2016 gyeongju earthquake," Journal of the Earthquake Engineering Society of Korea, Vol.24, No.2, pp.59-65, 2020. https://doi.org/10.5000/EESK.2020.24.2.059
  4. R. M. J. Amey, A. Hooper, and R. J. Walters, "A bayesian method for incorporating self-similarity into earthquake slip inversions," Journal of Geophysical Research: Solid Earth, Vol.123, No.7, pp.6052-6071, 2018, https://doi.org/10.1029/2017JB015316.
  5. M. A. Denolle and P. M. Shearer, "New perspectives on self-similarity for shallow thrust earthquakes," Journal of Geophysical Research; Solid Earth, Vol.121, No.9, pp.6533-6565, 2016. doi:10.1002/2016JB013105.
  6. J.-H. Wang, "A review on scaling of earthquake faults," Terrestrial, Atmospheric and Oceanic Sciences, Vol.29, No.6, pp.589-610, 2018, doi: 10.3319/TAO.2018.08.19.01.
  7. V. S. Zakharov, "Preliminary analysis of the self-similarity of the aftershocks of the Japanese earthquake on March 11, 2011," Moscow University Geology Bulletin, Vol.67, pp.133-137, 2012. https://doi.org/10.3103/S0145875212020081
  8. Z. Zhan, "Mechanisms and implications of deep earthquakes," Annual Review of Earth and Planetary Sciences, Vol.48, pp.147-174, 2020. https://doi.org/10.1146/annurev-earth-053018-060314
  9. "Leaflet for R," RStudio, 2014-2016, accessed September 26, 2022 [Internet], https://rstudio.github.io/leaflet/.
  10. H.-R. Koo, K.-H. Hong, and S.-K. Lim, "Bandwidth allocation for self-similar data traffic characteristics," Conference on the Korea Contents Association, Vol.3, No.1, pp.410-415, 2005.
  11. J. Beran, "Statistics for Long-Memory Processes," Chapman and Hall, New York, 1994.
  12. J. Chen, Z. Yan, L. Xu, Z. Liu, Y. Liu, and J. Tian, "The nonlinear time sequence analysis in the alpine-himalayan earthquake zone," E3S Web of Conference, Vol.299. No.02001, 2021.
  13. R. Console, A. M. Lombardi, M. Murru, and D. Rhoades, "Bath's law and the self-similarity of earthquakes," Journal of Geophysical Research: Solid Earth. American Geophysical Union (AGU), pp.23_1-9, 2003. https://doi.org/ 10.1029/2001jb001651.
  14. H.-D. Jeong, J.-S. Lee, K. Pawlikowski, and D. McNickle, "Comparison of various estimators in simulated FGN," Simulation Modelling Practice and Theory, Vol.15, pp. 1173-1191, 2007. https://doi.org/10.1016/j.simpat.2007.08.004
  15. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of ethernet traffic (Extended Version)," IEEE ACM Transactions on Networking, Vol.2, No.1, pp.1-15, 1994. https://doi.org/10.1109/90.282603
  16. J. Li and Y. Chen, "Rescaled range (R/S) analysis on seismic activity parameters," Acta Seismologica Sinica, Vol.14, pp.148-155 (2001). https://doi.org/10.1007/s11589-001-0145-9.
  17. "Earthquakes and tsunami occurrence statistics", South Korea Meteorological Administration, 2022, accessed September 19, 2022 [Internet], https://kosis.kr/statHtml/statHtml.do?orgId=141&tblId=TX_14101_A001&vw_cd=MT_ZTITLE&list_id=C_23&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do.
  18. 「Pohang Earthquake Analysis Report」, Bureau of Earthquakes and Volcanoes, South Korea Meteorological Administration, pp.48-49, 2018.
  19. Y.-G. Jeong and J.-Y. Chae, "The largest earthquake ever with a magnitude of 5.2 at Uljin Sea," 2004, accessed September 20, 2022 [Internet], https://www.donga.com/news/Society/article/all/20040530/8066887/1.
  20. "Earthquake and volcano (past earthquake) ranking by magnitude," Weather Nuri of the South Korea Meterological Administration, accessed September 20, 2022 [Internet], https://www.weather.go.kr/w/eqk-vol/archive/stat/list-by-size.do.
  21. 「History of earthquakes on the Korean Peninsula (2years~1904)」, National Institute of Meteorological Sciences, 2012.
  22. "Historic earthquakes," Weather Nuri of the South Korea Meterological Administration, accessed September 26, 2022 [Internet], https://www.weather.go.kr/w/eqk-vol/archive/historical-eqk.do.