DOI QR코드

DOI QR Code

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N. (University of Arizona) ;
  • Diaz, K. Marquez (University of Arizona) ;
  • Simmons-Potter, K. (University of Arizona) ;
  • Potter, B.G. Jr. (University of Arizona) ;
  • Bucay, J. (Raytheon Technologies)
  • 투고 : 2022.02.14
  • 심사 : 2022.05.29
  • 발행 : 2022.10.25

초록

An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

키워드

과제정보

The authors thank Raytheon Technologies for their financial support of this work and Dr. Steve Manson at Raytheon Technologies for helpful discussions. The authors also wish to thank Sandia National Labs, HERMES III personnel and Dr. Stephen Tobin at Los Alamos National Laboratories for enabling the ride-along portion of the experimental testing.

참고문헌

  1. W.C. Fan, C.R. Drumm, G.J. Scrivner, Shielding considerations for satellite microelectronics, IEEE Trans. Nucl. Sci. 43 (1996) 2790e2796. https://ieeexplore.ieee.org/ielx1/23/12152/00556868.pdf?tp=&arnumber=556868&isnumber=12152.
  2. Z.D. Whetstone, K.J. Kearfott, Layered shielding design for an active neutron interrogation system, Radiat. Phys. Chem. 125 (2016) 69-74, https://doi.org/10.1016/j.radphyschem.2016.03.018.
  3. M. Arif Sazali, N.K. Alang Md Rashid, K. Hamzah, A review on multilayer radiation shielding, IOP Conf. Ser. Mater. Sci. Eng. 555 (2019), https://doi.org/10.1088/1757-899X/555/1/012008.
  4. G. Hu, H. Hu, Q. Yang, B. Yu, W. Sun, Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and g-rays, Nucl. Eng. Technol. 52 (2020) 178-184, https://doi.org/10.1016/j.net.2019.07.016.
  5. M.A. Ryder, D.A. Lados, G.S. Iannacchione, A.M. Peterson, Fabrication and properties of novel polymer-metal composites using fused deposition modeling, Compos. Sci. Technol. 158 (2018) 43-50, https://doi.org/10.1016/j.compscitech.2018.01.049.
  6. G. Almisned, F. Akman, W.S. Abushanab, H.O. Tekin, M.R. Kacal, S.A.M. Issa, H. Polat, M. Oltulu, A. Ene, H.M.H. Zakaly, Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (rpe) and shielding properties for alpha, proton, neutron, and gamma radiations, Polymers 13 (2021), https://doi.org/10.3390/polym13183157.
  7. H.O. Tekin, M.R. Kacal, S.A.M. Issa, H. Polat, G. Susoy, F. Akman, O. Kilicoglu, V.H. Gillette, Sodium dodecatungstophosphate hydrate-filled polymer composites for nuclear radiation shielding, Mater. Chem. Phys. 256 (2020), 123667, https://doi.org/10.1016/j.matchemphys.2020.123667.
  8. M.R. Kacal, H. Polat, M. Oltulu, F. Akman, O. Agar, H.O. Tekin, Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study, Appl. Phys. Mater. Sci. Process 126 (2020) 1-15, https://doi.org/10.1007/s00339-020-3382-2.
  9. H.O. Tekin, F. Akman, S.A.M. Issa, M.R. Kacal, O. Kilicoglu, H. Polat, Two-step investigation on fabrication and characterization of iron-reinforced novel composite materials for nuclear-radiation shielding applications, J. Phys. Chem. Solid. 146 (2020), 109604, https://doi.org/10.1016/j.jpcs.2020.109604.
  10. F. Akman, I. Ozkan, M.R. Kacal, H. Polat, S.A.M. Issa, H.O. Tekin, O. Agar, Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites, Appl. Radiat. Isot. 167 (2021), 109470, https://doi.org/10.1016/j.apradiso.2020.109470.
  11. Q. Li, Q. Wei, W. Zheng, Y. Zheng, N. Okosi, Z. Wang, M. Su, Enhanced radiation shielding with conformal light-weight nanoparticle-polymer composite, ACS Appl. Mater. Interfaces 10 (2018) 35510-35515, https://doi.org/10.1021/acsami.8b10600.
  12. S. Woosley, N. Abuali Galehdari, A. Kelkar, S. Aravamudhan, Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding, J. Mater. Res. 33 (2018) 3657-3664, https://doi.org/10.1557/jmr.2018.316.
  13. Y. Wu, Y. Cao, Y. Wu, D. Li, Neutron shielding performance of 3D-Printed boron carbide PEEK composites, Materials 13 (2020), https://doi.org/10.3390/ma13102314.
  14. C.M. Shemelya, A. Rivera, A.T. Perez, C. Rocha, M. Liang, X. Yu, C. Kief, D. Alexander, J. Stegeman, H. Xin, R.B. Wicker, E. MacDonald, D.A. Roberson, Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten-polycarbonate polymer matrix composite for space-based applications, J. Electron. Mater. 44 (2015) 2598-2607, https://doi.org/10.1007/s11664-015-3687-7.
  15. A. Canel, H. Korkut, T. Korkut, Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials, Radiat. Phys. Chem. 158 (2019) 13-16, https://doi.org/10.1016/j.radphyschem.2019.01.005.
  16. A.M. El-Khatib, M.S. Hamada, M.T. Alabsy, Y.M. Youssef, M.A. Elzaher, M.S. Badawi, M. Fayez-Hassan, Y.N. Kopatch, I.N. Ruskov, M.I. Abbas, Fast and thermal neutrons attenuation through micro-sized and nano-sized CdO reinforced HDPE composites, Radiat. Phys. Chem. 180 (2021), 109245, https://doi.org/10.1016/j.radphyschem.2020.109245.
  17. M. Nabipour, B. Akhoundi, A. Bagheri Saed, Manufacturing of polymer/metal composites by fused deposition modeling process with polyethylene, J. Appl. Polym. Sci. 48717 (2019) 1-9, https://doi.org/10.1002/app.48717.
  18. X. Zhang, X. Zhang, S. Guo, Simple approach to developing high-efficiency neutron shielding composites, Polym. Eng. Sci. 59 (2019) E348-E355, https://doi.org/10.1002/pen.25065.
  19. X. Li, D. Warden, Y. Bayazitoglu, Analysis to evaluate multilayer shielding of galactic cosmic rays, J. Thermophys. Heat Tran. 32 (2018) 525-531, https://doi.org/10.2514/1.T5292.
  20. J. Wrobel, R. Hoyt, J. Cushing, M. Jaster, N. Voronka, J. Slostad, L. Paritsky, Versatile structural radiation shielding and thermal insulation through additive manufacturing, 27th Annu. AIAA/USU Conf. Small Satell. (2013) 1-9. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2926&context=smallsat.
  21. T. Gutu, Assessment of Polybenzimidazole Polymer Matrix Composite Constructed as a Graded-Z Laminate for Use as a Structural Radiation Shield for Cislunar Habitation Modules, University of Massachusetts Lowell, 2020.
  22. M. DeVanzo, R.B. Hayes, Ionizing radiation shielding properties of metal oxide impregnated conformal coatings, Radiat. Phys. Chem. 171 (2020), 108685, https://doi.org/10.1016/j.radphyschem.2020.108685.
  23. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.
  24. CERN, Credit/citations for data files distributed with Geant4 (n.d.), https://geant4.web.cern.ch/support/data_files_citations. (Accessed 15 April 2022).
  25. J. Liu, GEARS [source code], https://github.com/jintonic/gears, 2021.
  26. D. Wright, Shielding physics list description. https://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/shielding/physlistdoc.html, 2012. (Accessed 20 December 2021).
  27. T. Koi, G. Folger, Shielding.cc [source code], https://github.com/Geant4/geant4/blob/master/source/physics_lists/lists/src/Shielding.cc, 2010. (Accessed 10 April 2022).
  28. R. Brun, F. Rademakers, Root - an object oriented data analysis framework, in: Proc. AIHENP'96 Work., 1996, pp. 81-86, https://doi.org/10.5281/zenodo.3895860. Lausanne.
  29. GEANT4 geometry from text file version 1.0(n.d.), //geant4.web.cern.ch/sites/default/files/geant4/collaboration/working_groups/geometry/docs/textgeom/textgeom.pdf. (Accessed 1 December 2021).
  30. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, Stopping-power & range tables for electrons, protons, and Helium ions, 2017. //dx.doi.org/10.18434/T4NC7P.
  31. A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects, Second, Oxford University Press, New York, 2002.
  32. R. Baumann, K. Kruckmeyer, Radiation Handbook for Electronics: a compendium of radiation effects topics for space, industrial and terrestrial applications. www.ti.com/radbook, 2019.
  33. Y. Chen, G. Reeves, R.H.W. Friedel, M.F. Thomsen, M. Looper, D. Evans, J. Sauvaud, LEEM: a new empirical model of radiation-belt electrons in the low-Earth-orbit region, J. Geophys. Res. Sp. Phys. 117 (2012) n/a-n/a. doi.org/10.1029/2012JA017941.
  34. J. Park, K.W. Min, H. Seo, E. Kim, K. Ryu, J. Sohn, J. Seon, J. Yoo, S. Lee, B. Kress, J. Lee, C. Woo, D. Lee, Multi-year statistics of LEO energetic electrons as observed by the Korean NextSat-1, Space Weather 19 (2021), https://doi.org/10.1029/2021SW002787.
  35. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, E.J. Lavernia, Additive manufacturing of functionally graded materials: a review, Mater. Sci. Eng. 764 (2019), 138209, https://doi.org/10.1016/j.msea.2019.138209.
  36. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, M.A. Zucker, K. Olsen, XCOM: photon cross section database, 2010. //dx.doi.org/10.18434/T48G6X.