• Title/Summary/Keyword: parallel winding

Search Result 124, Processing Time 0.03 seconds

Characteristics of a Flux-Lock Type Superconducting Fault Current Limiter According to the Parallel Connection of the Superconducting Elements. (초전도 한류소자의 병렬연결에 따른 자속구속형 초전도 한류기의 특성 분석)

  • Oh, Kum-Gom;Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.198-201
    • /
    • 2008
  • We investigated the operating characteristics of the flux-lock type superconducting fault current limiter(SFCL) with the parallel connection between the primary and secondary windings which are connected with two superconducting units in series. The parallel connection for current level increase of the flux-lock type SFCL is necessary to apply the SFCL into the power system. The resistance generated in superconducting units was dependent upon the winding direction of the primary and the secondary coils, which can reduce the power burden. The resistance of the superconducting elements in the subtractive polarity winding is higher than that of the additive polarity winding. The fault current limiting effect of the subtractive polarity winding is better than that of the additive polarity winding. From this results, we confirmed that the power capacity of the flux-lock type SFCL could be increased by the parallel connection of the superconducting units.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.154-154
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A Heuristic Scheduling Algorithm for Transformer Winding Process with Non-identical Parallel Machines (이종병렬기계로 구성된 변압기 권선공정의 생산일정계획)

  • 박창권;장길상;이동현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • This paper proposes a heuristic scheduling algorithm to satisfy the customer's due date in the production process under make to order environment. The goal is to achieve the machine scheduling in the transformer winding process, in which consists of parallel machines with different machine performances. The winding is important production process in the transformer manufacturing company. The efficiency of the winding machines is different according to the voltage capacity and the winding type. This paper introduces a heuristic approach in the transformer winding process where the objective function is to minimize the total tardiness of jobs over due dates. The numerical experiment is illustrated to evaluate the performance.

Dynamic Analysis of Rotor Eccentricity in Switched Reluctance Motor with Parallel Winding

  • Li, Jian;Choi, Da-Woon;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.85-87
    • /
    • 2008
  • This paper presents dynamic characteristics in Switched Reluctance Motor (SRM) with rotor eccentricity and proposes the reduction method of rotor eccentricity effects by the different winding connections. These characteristics investigations are computed by 2D transient magnetic FEM analysis coupled with external circuits. The radial and unbalance magnetic force in the stator, which is the main exciting force of the vibration, is calculated using Maxwell stress method and compared with the performance characteristics according to the serial and parallel connections of windings. The influence of winding method counteracting unbalance forces on the rotor vibration behavior is estimated by the current waveforms of the paralleled paths under rotor eccentricity.

  • PDF

The Analysis of Temperature on Superconducting Parallel Bifilar Winding (초전도 병렬 무유도권선의 온도 해석)

  • Oh, Yun-Sang;Lee, Sang-Jin;Bae, Joon-Han;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.134-136
    • /
    • 1995
  • A superconducting parallel bifilar winding shows the phenomenon which is known as 'fast quench'. We analyzed the temperature characteristics on the winding by computer simulation, and confirmed theses by experiment. The temperature of the quenched point rose gradually as the source voltage was increased. The temperature changed radically as first, but had a gentle slope after a few milliseconds. As the source voltage was large, the initial quenched length also increased. The points in this quenched length showed almost the same temperature. but the points where initial quench had not occurred showed radical temperature gradient. We could observe that the temperature of the whole wire increased simultaneously as the fast quench occurred on the superconducting parallel bifilar winding, because a number of quenched points in that wire appeared at the same time.

  • PDF

Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel (2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Han, Tea-Hee;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

Current Limiting Characteristics of Flux-lock Type Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (자속구속형 한류기의 직병렬조합에 따른 전류제한특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Lee, Ju-Hyoung;Jung, Byung-Ik;Choi, Hyo-Sang;Choi, Myong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.87-88
    • /
    • 2007
  • We investigated the current limiting characteristics of flux-lock type superconducting fault current limiter using YBCO films University, Gwangju health college. The flux-lock type SFCL consisted of the transformer with a primary winding and a secondary winding connected in parallel, and the superconducting element was connected with secondary winding in series or parallel. Serial and parallel connections of superconducting elements are necessary for the increase of voltage and current capacities when we intend to apply the flux-lock type SFCL.

  • PDF

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Analysis on Current Limiting Characteristics of Double Quench Flux-Lock Type SFCL Using Its Third Winding (삼차권선을 이용한 이중퀜치 자속구속형 초전도한류기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.289-293
    • /
    • 2016
  • The flux-lock type superconducting fault current limiter (SFCL) connects the two parallel windings in parallel with a ferromagnetic core. We suggest that the double quench flux-lock type SFCL should add a third winding. We analyzed characteristics of the fault current and the peak current using the quench of the high-Tc superconducting element. The proposed SFCL's inductances of a primary winding and the third winding were fixed and the amplitude of inductance of the secondary winding was changed. We found that the fault current can be more effectively controlled through the analysis of the equivalent circuit and the short-circuit tests.