• Title/Summary/Keyword: paper sensor

Search Result 12,535, Processing Time 0.04 seconds

Design of Analog CMOS Vision Chip for Edge Detection with Low Power Consumption (저전력 아날로그 CMOS 윤곽검출 시각칩의 설계)

  • Kim, Jung-Hwan;Park, Jong-Ho;Suh, Sung-Ho;Lee, Min-Ho;Shin, Jang-Kyoo;Nam, Ki-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.231-240
    • /
    • 2003
  • The problem of power consumption and the limitation of a chip area should be considered when the pixel number of the edge detection circuit increases to fabricate a vision chip for edge detection with high resolution. The numeric increment of the unit circuit causes power consumption to increase and require a larger chip area. An increment of power consumption and a limitation of chip area with several ten milli-meters square supplied by the CMOS foundry company restrict the pixel numbers of the edge detection circuit. In this paper, we proposed a electronic switch to minimize the power consumption owing to the numeric increment of the edge detection circuit to realize a vision chip for edge detection with high resolution. We also applied a method by which photodetector and edge detection circuit are separated to implement a vision chip with a higher resolution. The photodetector circuit with $128{\times}128$ pixels uses a common edge detection circuit with $1{\times}128$ pixels so that resolution was improved at the same chip area. The chip size is $4mm{\times}4mm$ and the power consumption was confirmed to be about 20mW using SPICE.

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

A Design and Implementation of NFC Bridge Chip (NFC 브릿지 칩 설계 및 구현)

  • Lee, Pyeong-Han;Ryu, Chang-Ho;Chun, Sung-Hun;Kim, Sung-Wan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • This paper describes a design and implementation of the NFC bridge chip which performs interface between kinds of devices and mobile phones including NFC controller through NFC communication. The NFC bridge chip consists of the digital part and the analog part which are based on NFC Forum standard. Therefore the chip treats RF signals and then transforms the signal to digital data, so it can interface kinds of devices with the digital data. Especially the chip is able to detect RF signals and then wake up the host processor of a device. The wakeup function dramatically decreases the power consumption of the device. The carrier frequency is 13.56MHz, and the data rate is up to 424kbps. The chip has been fabricated with SMIC 180nm mixed-mode technology. Additionally an NFC bridge chip application to the blood glucose measurement system is described for an application example.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

Issues and Debugging Methodology for Porting TinyOS on a Small Network Embedded System (소형 네트워크 임베디드 시스템에 TinyOS 이식 과정에서의 이슈 및 디버깅 기법)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.94-105
    • /
    • 2008
  • Numerous platforms have been developed for ZigBee-based network embedded systems. Also, operating systems like TinyOS have been installed to facilitate efficient implementation of wireless sensor network applications which collect data, and/or execute commands. First of all, porting an operating system on a new platform may need invention of a substitute for a required but unsupported hardware component. This paper presents a multiplexed virtual system timer for a platform without a counter comparator which we have contrived to emulate by using an extra counter. Such porting also injects unexpected faults which cause a variety of painful failures. Unfortunately, TinyOS requires to handle a lot of asynchronous hardware interrupts which are hard to trace during debugging. Besides, simulators are not available for a new platform since the models of hardware on the platform are not usually developed, yet. We propose novel instrumentation techniques which can be used to effectively trace the bugs in such lack of debugging environment. These techniques are used to identify and fix a great deal of nasty issues in porting TinyOS 2.0 on MG2400 and MG2455 platforms made by RadioPulse Inc.

Motion Artifacts reduction from the PPG based on the Improved PMAF for the U-Healthcare System (U-헬스케어 시스템을 위한 개선된 PMAF 기반의 PPG 신호의 동잡음 제거)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Jun, Jae-Chul;Lee, Gun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.28-34
    • /
    • 2008
  • The real-time biomedical signal monitoring is a very important factor to realize the ubiquitous healthcare environment. Most of these devices for monitoring the biomedical information get the PPG signal from the user, and these signals are utilized for monitoring their health. It is inconvenient to get the PPG because the user should wear the finger probe with his finger for measuring the PPG signal. Also it is difficult to get the PPG correctly, because of the motion artifacts from the movement of the user. In this paper, we develop the watch type biomedical signal monitoring system without the finger probe, and propose the new algorithm for reducing the motion artifacts from the PPG signal. We designed the system which gets the PPG from the sensor on the wrist band strip. As compared with the finger probe type, this system we proposed is more affected by the motion artifacts. So to filter this motion artifacts, we propose the new method; the improved PMAF(Periodic Moving Average Filter) method.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Design and Implementation of the Stop line and Crosswalk Recognition Algorithm for Autonomous UGV (자율 주행 UGV를 위한 정지선과 횡단보도 인식 알고리즘 설계 및 구현)

  • Lee, Jae Hwan;Yoon, Heebyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • In spite of that stop line and crosswalk should be aware of the most basic objects in transportation system, its features extracted are very limited. In addition to image-based recognition technology, laser and RF, GPS/INS recognition technology, it is difficult to recognize. For this reason, the limited research in this area has been done. In this paper, the algorithm to recognize the stop line and crosswalk is designed and implemented using image-based recognition technology with the images input through a vision sensor. This algorithm consists of three functions.; One is to select the area, in advance, needed for feature extraction in order to speed up the data processing, 'Region of Interest', another is to process the images only that white color is detected more than a certain proportion in order to remove the unnecessary operation, 'Color Pattern Inspection', the other is 'Feature Extraction and Recognition', which is to extract the edge features and compare this to the previously-modeled one to identify the stop line and crosswalk. For this, especially by using case based feature comparison algorithm, it can identify either both stop line and crosswalk exist or just one exists. Also the proposed algorithm is to develop existing researches by comparing and analysing effect of in-vehicle camera installation and changes in recognition rate of distance estimation and various constraints such as backlight and shadow.

Automatic speech recognition using acoustic doppler signal (초음파 도플러를 이용한 음성 인식)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.74-82
    • /
    • 2016
  • In this paper, a new automatic speech recognition (ASR) was proposed where ultrasonic doppler signals were used, instead of conventional speech signals. The proposed method has the advantages over the conventional speech/non-speech-based ASR including robustness against acoustic noises and user comfortability associated with usage of the non-contact sensor. In the method proposed herein, 40 kHz ultrasonic signal was radiated toward to the mouth and the reflected ultrasonic signals were then received. Frequency shift caused by the doppler effects was used to implement ASR. The proposed method employed multi-channel ultrasonic signals acquired from the various locations, which is different from the previous method where single channel ultrasonic signal was employed. The PCA(Principal Component Analysis) coefficients were used as the features of ASR in which hidden markov model (HMM) with left-right model was adopted. To verify the feasibility of the proposed ASR, the speech recognition experiment was carried out the 60 Korean isolated words obtained from the six speakers. Moreover, the experiment results showed that the overall word recognition rates were comparable with the conventional speech-based ASR methods and the performance of the proposed method was superior to the conventional signal channel ASR method. Especially, the average recognition rate of 90 % was maintained under the noise environments.

Implementation of a Remote Patient Monitoring System using Mobile Phones (모바일 폰을 이용한 원격 환자 관리 시스템의 구현)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1167-1174
    • /
    • 2009
  • In the monitoring of a patient in a sickroom, not only the physiologic and environmental data of the patient, which is automatically measured, but also the clinical data(clinical chart)of the patient, which is drew up by a doctor or nurse, are recognized as important data. However, since in the current environment of a sickroom, clinical data is collected being divided from the data that is automatically measured, the two data are used without an effective integration. This is because the integration of the two data is difficult due to their different collection times, which leads the reconstruction of clinical data to be remarkably uncertain. In order to solve these problems, a method to synchronize the continuous environmental data of a sickroom and clinical data is appearing as an important measure. In addition, the increase of use of small machines and the development of solutions based on wireless communications provide a communication platform to the developers of health care. Thus, this paper realizes a remote system for taking care of patients based on a web that uses mobile phones. That is, clinical data made by a nurse or doctor and the environmental data of a sick room comes to be collected by a collection module through a wireless sensor network. An observer can see clinical data and the environmental data of a sickroom through his/her mobile phone, integrating and storing his/her data into the database. Families of a patient can see clinical data made by hospital and the environment of the sick room of the patent through their computers or mobile phones outside the hospital. Through the system,hospital can provide better medical services to patients and their families.