• Title/Summary/Keyword: palindromic structure

Search Result 12, Processing Time 0.031 seconds

Identifying Variable-Length Palindromic Pairs in DNA Sequences (DNA사슬 내에서 다양한 길이의 팰린드롬쌍 검색 연구)

  • Kim, Hyoung-Rae;Jeong, Kyoung-Hee;Jeon, Do-Hong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.461-472
    • /
    • 2007
  • The emphasis in genome projects has Been moving towards the sequence analysis in order to extract biological "meaning"(e.g., evolutionary history of particular molecules or their functions) from the sequence. Especially. palindromic or direct repeats that appear in a sequence have a biophysical meaning and the problem is to recognize interesting patterns and configurations of words(strings of characters) over complementary alphabets. In this paper, we propose an algorithm to identify variable length palindromic pairs(longer than a threshold), where we can allow gaps(distance between words). The algorithm is called palindrome algorithm(PA) and has O(N) time complexity. A palindromic pair consists of a hairpin structure. By composing collected palindromic pairs we build n-pair palindromic patterns. In addition, we dot some of the longest pairs in a circle to represent the structure of a DNA sequence. We run the algorithm over several selected genomes and the results of E.coli K12 are presented. There existed very long palindromic pair patterns in the genomes, which hardly occur in a random sequence.

Diversity and Genotypic Structure of ECOR Collection Determined by Repetitive Extragenic Palindromic PCR Genome Fingerprinting

  • HWANG KEUM-OK;JANG HYO-MI;CHO JAE-CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.672-677
    • /
    • 2005
  • The standard reference collection of strains for E. coli, the ECOR collection, was analyzed by a genome-based typing method. Seventy-one ECOR strains were subjected to repetitive extragenic palindromic PCR genome fingerprinting with BOX primers (BOX-PCR). Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 28 genotypes in the ECOR collection. Shannon's entropy-based diversity index was 3.07, and the incident-based coverage estimator indicated potentially 420 genotypes among E. coli populations. Chi-square test of goodness-of-fit showed statistically significant association between the genotypes defined by BOX-PCR fingerprinting and the groups previously defined by multi-locus enzyme electrophoresis. This study suggests that the diversification of E. coli strains in natural populations is actively ongoing, and rep-PCR fingerprinting is a convenient and reliable method to type E. coli strains for the purposes ranging from ecology to quarantine.ine.

New Approach to the Analysis of Palindromic Structure in Genome Sequences

  • Kim, Seok-Won;Lee, Yong-Seok;Choi, Sang-Haeng;Chae, Sung-Hwa;Kim, Dae-Won;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.4 no.4
    • /
    • pp.167-169
    • /
    • 2006
  • PABAP (Palindrome Analysis by BLAST Program) is an analysis system that identifies palindromic sequences from a large genome sequence up to several megabases long. It uses NCBI BLAST as a searching engine, and data processing such as alignment filtration and detection of inverted repeats which satisfy user-defined parameters is performed by manipulating data after populating into a MySQL database. PABAP outperforms publicly available palindrome search program in that it can detect large palindrome with internal spacer at a faster speed from bacterial genomes. It is a standalone application and is freely available for noncommercial users.

Identification and Expression of Equine MER-Derived miRNAs

  • Gim, Jeong-An;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.262-270
    • /
    • 2017
  • MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thoroughbred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miRNAs that are expressed in several tissues and are thought to have biological functions.

Structure and Diversity of Arsenic-Resistant Bacteria in an Old Tin Mine Area of Thailand

  • Jareonmit, Pechrada;Sajjaphan, Kannika;Sadowsky, Michael J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2010
  • The microbial community structure in Thailand soils contaminated with low and high levels of arsenic was determined by denaturing gradient gel electrophoresis. Band pattern analysis indicated that the bacterial community was not significantly different in the two soils. Phylogenetic analysis obtained by excising and sequencing six bands indicated that the soils were dominated by Arthrobacter koreensis and $\beta$-Proteobacteria. Two hundred and sixty-two bacterial isolates were obtained from arsenic-contaminated soils. The majority of the As-resistant isolates were Gramnegative bacteria. MIC studies indicated that all of the tested bacteria had greater resistance to arsenate than arsenite. Some strains were capable of growing in medium containing up to 1,500 mg/l arsenite and arsenate. Correlations analysis of resistance patterns of arsenite resistance indicated that the isolated bacteria could be categorized into 13 groups, with a maximum similarity value of 100%. All strains were also evaluated for resistance to eight antibiotics. The antibiotic resistance patterns divided the strains into 100 unique groups, indicating that the strains were very diverse. Isolates from each antibiotic resistance group were characterized in more detail by using the repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique with ERIC primers. The PCR products were analyzed by agarose gel electrophoresis. The genetic relatedness of 100 bacterial fingerprints, determined by using the Pearson product-moment similarity coefficient, showed that the isolates could be divided into four clusters, with similarity values ranging from 5-99%. Although many isolates were genetically diverse, others were clonal in nature. Additionally, the arsenic-resistant isolates were examined for the presence of arsenic resistance (ars) genes by using PCR, and 30% of the isolates were found to carry an arsenate reductase encoded by the arsC gene.

Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements

  • Gim, Jeong-An;Ha, Hong-Seok;Ahn, Kung;Kim, Dae-Soo;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.

Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

  • Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1183-1189
    • /
    • 2017
  • Objective: Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods: Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2) gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7) cells during muscle differentiation. Results: Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO) QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion: We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.