DOI QR코드

DOI QR Code

Identification and Expression of Equine MER-Derived miRNAs

  • Gim, Jeong-An (Department of Biological Sciences, College of Natural Science, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Science, Pusan National University)
  • Received : 2016.12.04
  • Accepted : 2017.03.15
  • Published : 2017.04.30

Abstract

MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thoroughbred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miRNAs that are expressed in several tissues and are thought to have biological functions.

Keywords

References

  1. Ahn, K., Gim, J.A., Ha, H.S., Han, K., and Kim, H.S. (2013). The novel MER transposon-derived miRNAs in human genome. Gene 512, 422-428. https://doi.org/10.1016/j.gene.2012.08.028
  2. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706. https://doi.org/10.1093/nar/gki567
  3. Balada, E., Vilardell-Tarres, M., and Ordi-Ros, J. (2010). Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 29, 351-370. https://doi.org/10.3109/08830185.2010.485333
  4. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
  5. Borchert, G.M., Holton, N.W., Williams, J.D., Hernan, W.L., Bishop, I.P., Dembosky, J.A., Elste, J.E., Gregoire, N.S., Kim, J.A., Koehler, W.W., et al. (2011). Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements 1, 8-17. https://doi.org/10.4161/mge.1.1.15766
  6. Chen, K., and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93-103.
  7. Coffin, J.M. (2004). Evolution of retroviruses: fossils in our DNA. Proc Am Philos Soc 148, 264-280.
  8. Doan, R., Cohen, N., Harrington, J., Veazey, K., Juras, R., Cothran, G., McCue, M.E., Skow, L., and Dindot, S.V. (2012). Identification of copy number variants in horses. Genome Res. 22, 899-907. https://doi.org/10.1101/gr.128991.111
  9. Fang, R., Olds, L.C., and Sibley, E. (2006). Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr. Patterns 6, 426-432. https://doi.org/10.1016/j.modgep.2005.09.003
  10. Feschotte, C., Swamy, L., and Wessler, S.R. (2003). Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163, 747-758.
  11. Fu, H.J., Zhu, J., Yang, M., Zhang, Z.Y., Tie, Y., Jiang, H., Sun, Z.X., and Zheng, X.F. (2006). A novel method to monitor the expression of microRNAs. Mol. Biotechnol. 32, 197-204. https://doi.org/10.1385/MB:32:3:197
  12. Gim, J.-A., Ha, H.-S., Ahn, K., Kim, D.-S., and Kim, H.-S. (2014). Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 12, 261-267. https://doi.org/10.5808/GI.2014.12.4.261
  13. Gim, J.A., Hong, C.P., Kim, D.S., Moon, J.W., Choi, Y., Eo, J., Kwon, Y.J., Lee, J.R., Jung, Y.D., Bae, J.H., et al. (2015). Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells 38, 210-220. https://doi.org/10.14348/molcells.2015.2138
  14. Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632. https://doi.org/10.1158/0008-5472.CAN-05-2352
  15. Hill, E.W., Gu, J., McGivney, B.A., and MacHugh, D.E. (2010). Targets of selection in the Thoroughbred genome contain exerciserelevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41 Suppl 2, 56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
  16. Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., and Down, T. (2002). The Ensembl genome database project. Nucleic Acids Res. 30, 38-41. https://doi.org/10.1093/nar/30.1.38
  17. Hutvagner, G. (2005). Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett. 579, 5850-5857. https://doi.org/10.1016/j.febslet.2005.08.071
  18. Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
  19. Jurka, J., Kapitonov, V.V., Klonowski, P., Walichiewicz, J., and Smit, A.F. (1996). Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha. Genetica 98, 235-247. https://doi.org/10.1007/BF00057588
  20. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462-467. https://doi.org/10.1159/000084979
  21. Kim, M.C., Lee, S.W., Ryu, D.Y., Cui, F.J., Bhak, J., and Kim, Y. (2014). Identification and characterization of microRNAs in normal equine tissues by next generation sequencing. PLoS One 9, e93662. https://doi.org/10.1371/journal.pone.0093662
  22. Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-73. https://doi.org/10.1093/nar/gkt1181
  23. Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Kochert, K., Bouhlel, M.A., Richter, J., Soler, E., et al. (2010). Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571-579, https://doi.org/10.1038/nm.2129
  24. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  25. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
  26. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., and Byrnes, E.J. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. https://doi.org/10.1038/nature05453
  27. Li, Y., Xie, J., Xu, X., Wang, J., Ao, F., Wan, Y., and Zhu, Y. (2013). MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-${\lambda}1$. Protein Cell 4, 130-141. https://doi.org/10.1007/s13238-012-2081-y
  28. Liang, T., Guo, L., and Liu, C. (2012). Genome-wide analysis of mir- 548 gene family reveals evolutionary and functional implications. J. Biomed. Biotechnol. 2012, 679563.
  29. Lund, E., and Dahlberg, J.E. (2006). Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59-66. https://doi.org/10.1101/sqb.2006.71.050
  30. Nishimura, M., and Naito, S. (2005). Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol. Pharm. Bull. 28, 886-892. https://doi.org/10.1248/bpb.28.886
  31. Nozawa, M., Miura, S., and Nei, M. (2010). Origins and evolution of microRNA genes in Drosophila species. Genome Biol. Evol. 2, 180-189. https://doi.org/10.1093/gbe/evq009
  32. Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y., and Seto, M. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095.
  33. Ou-Yang, F., Luo, Q.-J., Zhang, Y., Richardson, C.R., Jiang, Y., and Rock, C.D. (2013). Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice. Funct. Integr. Genomics 13, 207-216. https://doi.org/10.1007/s10142-013-0313-8
  34. Pace, J.K., 2nd., and Feschotte, C. (2007). The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422-432. https://doi.org/10.1101/gr.5826307
  35. Park, S.J., Kim, Y.H., Lee, S.R., Choe, S.H., Kim, M.J., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015). Gain of a new exon by a lineage-specific alu element-integration event in the BCS1L gene during primate evolution. Mol. Cells 38, 950-958. https://doi.org/10.14348/molcells.2015.0121
  36. Petersen, J.L., Mickelson, J.R., Rendahl, A.K., Valberg, S.J., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., et al. (2013). Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 9, e1003211. https://doi.org/10.1371/journal.pgen.1003211
  37. Piriyapongsa, J., and Jordan, I.K. (2007). A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203. https://doi.org/10.1371/journal.pone.0000203
  38. Piriyapongsa, J., and Jordan, I.K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14, 814-821. https://doi.org/10.1261/rna.916708
  39. Piriyapongsa, J., Marino-Ramirez, L., and Jordan, I.K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323-1337.
  40. Ruike, Y., Ichimura, A., Tsuchiya, S., Shimizu, K., Kunimoto, R., Okuno, Y., and Tsujimoto, G. (2008). Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J. Hum. Genet. 53, 515-523. https://doi.org/10.1007/s10038-008-0279-x
  41. Shukla, G.C., Singh, J., and Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell Pharmacol. 3, 83-92.
  42. Smalheiser, N.R. (2003). EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol. 4, 403. https://doi.org/10.1186/gb-2003-4-7-403
  43. Smalheiser, N.R., and Torvik, V.I. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322-326. https://doi.org/10.1016/j.tig.2005.04.008
  44. Smit, A., Hubley, R., and Green, P. (2004). RepeatMasker Open-3.0. 2004. Seattle (WA): Institute for Systems Biology.
  45. Smit, A.F. (1993). Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21, 1863-1872. https://doi.org/10.1093/nar/21.8.1863
  46. Wade, C.M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T.L., Adelson, D.L., Bailey, E., Bellone, R.R., et al. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867. https://doi.org/10.1126/science.1178158
  47. Yuan, Z., Sun, X., Jiang, D., Ding, Y., Lu, Z., Gong, L., Liu, H., and Xie, J. (2010). Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol. Biol. 10, 346. https://doi.org/10.1186/1471-2148-10-346
  48. Yuan, Z., Sun, X., Liu, H., and Xie, J. (2011). MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 6, e17666. https://doi.org/10.1371/journal.pone.0017666
  49. Zhang, Q., Arbuckle, J., and Wessler, S.R. (2000). Recent, extensive, and preferential insertion of members of the miniature invertedrepeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. USA 97, 1160-1165. https://doi.org/10.1073/pnas.97.3.1160
  50. Zhang, H., Liu, Y., Su, D., Yang, Y., Bai, G., Tao, D., Ma, Y., and Zhang, S. (2011). A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil. Steril. 96, 34-39. e37. https://doi.org/10.1016/j.fertnstert.2011.04.053
  51. Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., et al. (2009). In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131. https://doi.org/10.1016/j.ygeno.2009.04.006

Cited by

  1. Expression analysis of miR-221-3p and its target genes in horses pp.2092-9293, 2019, https://doi.org/10.1007/s13258-018-00778-3