References
- Ahn, K., Gim, J.A., Ha, H.S., Han, K., and Kim, H.S. (2013). The novel MER transposon-derived miRNAs in human genome. Gene 512, 422-428. https://doi.org/10.1016/j.gene.2012.08.028
- Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706. https://doi.org/10.1093/nar/gki567
- Balada, E., Vilardell-Tarres, M., and Ordi-Ros, J. (2010). Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 29, 351-370. https://doi.org/10.3109/08830185.2010.485333
- Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
- Borchert, G.M., Holton, N.W., Williams, J.D., Hernan, W.L., Bishop, I.P., Dembosky, J.A., Elste, J.E., Gregoire, N.S., Kim, J.A., Koehler, W.W., et al. (2011). Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements 1, 8-17. https://doi.org/10.4161/mge.1.1.15766
- Chen, K., and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93-103.
- Coffin, J.M. (2004). Evolution of retroviruses: fossils in our DNA. Proc Am Philos Soc 148, 264-280.
- Doan, R., Cohen, N., Harrington, J., Veazey, K., Juras, R., Cothran, G., McCue, M.E., Skow, L., and Dindot, S.V. (2012). Identification of copy number variants in horses. Genome Res. 22, 899-907. https://doi.org/10.1101/gr.128991.111
- Fang, R., Olds, L.C., and Sibley, E. (2006). Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr. Patterns 6, 426-432. https://doi.org/10.1016/j.modgep.2005.09.003
- Feschotte, C., Swamy, L., and Wessler, S.R. (2003). Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163, 747-758.
- Fu, H.J., Zhu, J., Yang, M., Zhang, Z.Y., Tie, Y., Jiang, H., Sun, Z.X., and Zheng, X.F. (2006). A novel method to monitor the expression of microRNAs. Mol. Biotechnol. 32, 197-204. https://doi.org/10.1385/MB:32:3:197
- Gim, J.-A., Ha, H.-S., Ahn, K., Kim, D.-S., and Kim, H.-S. (2014). Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 12, 261-267. https://doi.org/10.5808/GI.2014.12.4.261
- Gim, J.A., Hong, C.P., Kim, D.S., Moon, J.W., Choi, Y., Eo, J., Kwon, Y.J., Lee, J.R., Jung, Y.D., Bae, J.H., et al. (2015). Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells 38, 210-220. https://doi.org/10.14348/molcells.2015.2138
- Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632. https://doi.org/10.1158/0008-5472.CAN-05-2352
- Hill, E.W., Gu, J., McGivney, B.A., and MacHugh, D.E. (2010). Targets of selection in the Thoroughbred genome contain exerciserelevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41 Suppl 2, 56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
- Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., and Down, T. (2002). The Ensembl genome database project. Nucleic Acids Res. 30, 38-41. https://doi.org/10.1093/nar/30.1.38
- Hutvagner, G. (2005). Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett. 579, 5850-5857. https://doi.org/10.1016/j.febslet.2005.08.071
- Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
- Jurka, J., Kapitonov, V.V., Klonowski, P., Walichiewicz, J., and Smit, A.F. (1996). Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha. Genetica 98, 235-247. https://doi.org/10.1007/BF00057588
- Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462-467. https://doi.org/10.1159/000084979
- Kim, M.C., Lee, S.W., Ryu, D.Y., Cui, F.J., Bhak, J., and Kim, Y. (2014). Identification and characterization of microRNAs in normal equine tissues by next generation sequencing. PLoS One 9, e93662. https://doi.org/10.1371/journal.pone.0093662
- Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-73. https://doi.org/10.1093/nar/gkt1181
- Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Kochert, K., Bouhlel, M.A., Richter, J., Soler, E., et al. (2010). Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571-579, https://doi.org/10.1038/nm.2129
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
- Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
- Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., and Byrnes, E.J. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. https://doi.org/10.1038/nature05453
-
Li, Y., Xie, J., Xu, X., Wang, J., Ao, F., Wan, Y., and Zhu, Y. (2013). MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-
${\lambda}1$ . Protein Cell 4, 130-141. https://doi.org/10.1007/s13238-012-2081-y - Liang, T., Guo, L., and Liu, C. (2012). Genome-wide analysis of mir- 548 gene family reveals evolutionary and functional implications. J. Biomed. Biotechnol. 2012, 679563.
- Lund, E., and Dahlberg, J.E. (2006). Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59-66. https://doi.org/10.1101/sqb.2006.71.050
- Nishimura, M., and Naito, S. (2005). Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol. Pharm. Bull. 28, 886-892. https://doi.org/10.1248/bpb.28.886
- Nozawa, M., Miura, S., and Nei, M. (2010). Origins and evolution of microRNA genes in Drosophila species. Genome Biol. Evol. 2, 180-189. https://doi.org/10.1093/gbe/evq009
- Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y., and Seto, M. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095.
- Ou-Yang, F., Luo, Q.-J., Zhang, Y., Richardson, C.R., Jiang, Y., and Rock, C.D. (2013). Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice. Funct. Integr. Genomics 13, 207-216. https://doi.org/10.1007/s10142-013-0313-8
- Pace, J.K., 2nd., and Feschotte, C. (2007). The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422-432. https://doi.org/10.1101/gr.5826307
- Park, S.J., Kim, Y.H., Lee, S.R., Choe, S.H., Kim, M.J., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015). Gain of a new exon by a lineage-specific alu element-integration event in the BCS1L gene during primate evolution. Mol. Cells 38, 950-958. https://doi.org/10.14348/molcells.2015.0121
- Petersen, J.L., Mickelson, J.R., Rendahl, A.K., Valberg, S.J., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., et al. (2013). Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 9, e1003211. https://doi.org/10.1371/journal.pgen.1003211
- Piriyapongsa, J., and Jordan, I.K. (2007). A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203. https://doi.org/10.1371/journal.pone.0000203
- Piriyapongsa, J., and Jordan, I.K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14, 814-821. https://doi.org/10.1261/rna.916708
- Piriyapongsa, J., Marino-Ramirez, L., and Jordan, I.K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323-1337.
- Ruike, Y., Ichimura, A., Tsuchiya, S., Shimizu, K., Kunimoto, R., Okuno, Y., and Tsujimoto, G. (2008). Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J. Hum. Genet. 53, 515-523. https://doi.org/10.1007/s10038-008-0279-x
- Shukla, G.C., Singh, J., and Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell Pharmacol. 3, 83-92.
- Smalheiser, N.R. (2003). EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol. 4, 403. https://doi.org/10.1186/gb-2003-4-7-403
- Smalheiser, N.R., and Torvik, V.I. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322-326. https://doi.org/10.1016/j.tig.2005.04.008
- Smit, A., Hubley, R., and Green, P. (2004). RepeatMasker Open-3.0. 2004. Seattle (WA): Institute for Systems Biology.
- Smit, A.F. (1993). Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21, 1863-1872. https://doi.org/10.1093/nar/21.8.1863
- Wade, C.M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T.L., Adelson, D.L., Bailey, E., Bellone, R.R., et al. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867. https://doi.org/10.1126/science.1178158
- Yuan, Z., Sun, X., Jiang, D., Ding, Y., Lu, Z., Gong, L., Liu, H., and Xie, J. (2010). Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol. Biol. 10, 346. https://doi.org/10.1186/1471-2148-10-346
- Yuan, Z., Sun, X., Liu, H., and Xie, J. (2011). MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 6, e17666. https://doi.org/10.1371/journal.pone.0017666
- Zhang, Q., Arbuckle, J., and Wessler, S.R. (2000). Recent, extensive, and preferential insertion of members of the miniature invertedrepeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. USA 97, 1160-1165. https://doi.org/10.1073/pnas.97.3.1160
- Zhang, H., Liu, Y., Su, D., Yang, Y., Bai, G., Tao, D., Ma, Y., and Zhang, S. (2011). A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil. Steril. 96, 34-39. e37. https://doi.org/10.1016/j.fertnstert.2011.04.053
- Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., et al. (2009). In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131. https://doi.org/10.1016/j.ygeno.2009.04.006
Cited by
- Expression analysis of miR-221-3p and its target genes in horses pp.2092-9293, 2019, https://doi.org/10.1007/s13258-018-00778-3