Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park (Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University)
  • Received : 2022.10.17
  • Accepted : 2022.11.21
  • Published : 2023.02.01


Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.



This work was supported by Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01621901), Rural Development Administration (RDA), Korea.


  1. Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 1989;56:313-21.
  2. Koller BH, Hagemann LJ, Doetschman T, et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci 1989;86:8927-31.
  3. Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R. Germline transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 1989;342:435-8.
  4. Schwartzberg PL, Goff SP, Robertson EJ. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 1989;246:799-803.
  5. Park TS, Lee HJ, Kim KH, Kim J, Han JY. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci 2014;111:12716-21.
  6. Schusser B, Collarini EJ, Yi H, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci 2013;110:20170-5.
  7. Park TS, Park J, Lee JH, Park J, Park B. Disruption of G0/G 1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB J 2019;33:1188-98.
  8. Kim G, Lee JH, Song S, et al. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J 2020; 34:5688-96.
  9. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23.
  10. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-6.
  11. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012;482:331-8.
  12. Whitworth KM, Rowland RR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 2016;34:20-2.
  13. Carlson DF, Lancto CA, Zang B, et al. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 2016;34:479-81.
  14. Park TS, Han JY. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci 2012;109:9337-41.
  15. Stern C. The chick model system: a distinguished past and a great future. Int J Dev Biol 2018;62:1-4.
  16. Lee J, Kim D, Lee K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int J Mol Sci 2020;21:1504.
  17. Koslova A, Kucerova D, Reinisova M, Geryk J, Trefil P, Hejnar J. Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses 2018;10:605.
  18. Chin CL, Goh JB, Srinivasan H, et al. A human expression system based on HEK293 for the stable production of recombinant erythropoietin. Sci Rep 2019;9:16768.
  19. Mensah EO, Guo XY, Gao XD, Fujita M. Establishment of DHFR-deficient HEK293 cells for high yield of therapeutic glycoproteins. J Biosci Bioeng 2019;128:487-94.
  20. Herron LR, Pridans C, Turnbull ML, et al. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol 2018;18:82.
  21. Oishi I, Yoshii K, Miyahara D, Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci Rep 2018;8:10203.
  22. Kim SW, Lee JH, Han JS, Shin SP, Park TS. piggyBac transposition and the expression of human cystatin C in transgenic chickens. Animals 2021;11:1554.
  23. Kim SW, Lee JH, Park TS. Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells. Asian-Australas J Anim Sci 2017;30:1183-9.
  24. Kim SW, Lee JH, Park BC, Park TS. Myotube differentiation in clustered regularly interspaced short palindromic repeat/ Cas9-mediated MyoD knockout quail myoblast cells. AsianAustralas J Anim Sci 2017;30:1029-36.
  25. Lee JH, Kim SW, Park TS. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australas J Anim Sci 2017;30:743-8.
  26. Post MJ. Cultured beef: medical technology to produce food. J Sci Food Agric 2014;94:1039-41.
  27. Lee SI, Lee BR, Hwang YS, et al. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proc Natl Acad Sci USA 2011;108:10426-31.
  28. Lee JH, Park JW, Kang KS, Park TS. Forkhead box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells. Br Poult Sci 2019;60:23-30.
  29. Lee JH, Kim SW, Han JS, et al. Functional analyses of miRNA146b-5p during myogenic proliferation and differentiation in chicken myoblasts. BMC Mol Cell Biol 2020;21:40.
  30. Mukae T, Yoshii K, Watanobe T, Tagami T, Oishi I. Production and characterization of eggs from hens with ovomucoid gene mutation. Poult Sci 2021;100:452-60.
  31. Ioannidis J, Taylor G, Zhao D, et al. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc Natl Acad Sci 2021;118:e2020909118.
  32. Lee HJ, Yoon JW, Jung KM, et al. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J 2019;33:8519-29.
  33. Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 2017;144:928-34.