Browse > Article
http://dx.doi.org/10.14348/molcells.2017.2295

Identification and Expression of Equine MER-Derived miRNAs  

Gim, Jeong-An (Department of Biological Sciences, College of Natural Science, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Science, Pusan National University)
Abstract
MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thoroughbred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miRNAs that are expressed in several tissues and are thought to have biological functions.
Keywords
medium reiteration frequency transposon; MicroRNA; palindromic structure; thoroughbred horse;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Piriyapongsa, J., and Jordan, I.K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14, 814-821.   DOI
2 Piriyapongsa, J., Marino-Ramirez, L., and Jordan, I.K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323-1337.
3 Ruike, Y., Ichimura, A., Tsuchiya, S., Shimizu, K., Kunimoto, R., Okuno, Y., and Tsujimoto, G. (2008). Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J. Hum. Genet. 53, 515-523.   DOI
4 Shukla, G.C., Singh, J., and Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell Pharmacol. 3, 83-92.
5 Smalheiser, N.R. (2003). EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol. 4, 403.   DOI
6 Smalheiser, N.R., and Torvik, V.I. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322-326.   DOI
7 Smit, A., Hubley, R., and Green, P. (2004). RepeatMasker Open-3.0. 2004. Seattle (WA): Institute for Systems Biology.
8 Smit, A.F. (1993). Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21, 1863-1872.   DOI
9 Wade, C.M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T.L., Adelson, D.L., Bailey, E., Bellone, R.R., et al. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867.   DOI
10 Yuan, Z., Sun, X., Jiang, D., Ding, Y., Lu, Z., Gong, L., Liu, H., and Xie, J. (2010). Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol. Biol. 10, 346.   DOI
11 Yuan, Z., Sun, X., Liu, H., and Xie, J. (2011). MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 6, e17666.   DOI
12 Zhang, Q., Arbuckle, J., and Wessler, S.R. (2000). Recent, extensive, and preferential insertion of members of the miniature invertedrepeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. USA 97, 1160-1165.   DOI
13 Zhang, H., Liu, Y., Su, D., Yang, Y., Bai, G., Tao, D., Ma, Y., and Zhang, S. (2011). A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil. Steril. 96, 34-39. e37.   DOI
14 Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.   DOI
15 Ahn, K., Gim, J.A., Ha, H.S., Han, K., and Kim, H.S. (2013). The novel MER transposon-derived miRNAs in human genome. Gene 512, 422-428.   DOI
16 Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706.   DOI
17 Balada, E., Vilardell-Tarres, M., and Ordi-Ros, J. (2010). Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 29, 351-370.   DOI
18 Borchert, G.M., Holton, N.W., Williams, J.D., Hernan, W.L., Bishop, I.P., Dembosky, J.A., Elste, J.E., Gregoire, N.S., Kim, J.A., Koehler, W.W., et al. (2011). Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements 1, 8-17.   DOI
19 Chen, K., and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93-103.
20 Coffin, J.M. (2004). Evolution of retroviruses: fossils in our DNA. Proc Am Philos Soc 148, 264-280.
21 Doan, R., Cohen, N., Harrington, J., Veazey, K., Juras, R., Cothran, G., McCue, M.E., Skow, L., and Dindot, S.V. (2012). Identification of copy number variants in horses. Genome Res. 22, 899-907.   DOI
22 Hill, E.W., Gu, J., McGivney, B.A., and MacHugh, D.E. (2010). Targets of selection in the Thoroughbred genome contain exerciserelevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41 Suppl 2, 56-63.   DOI
23 Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., et al. (2009). In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131.   DOI
24 Fang, R., Olds, L.C., and Sibley, E. (2006). Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr. Patterns 6, 426-432.   DOI
25 Feschotte, C., Swamy, L., and Wessler, S.R. (2003). Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163, 747-758.
26 Fu, H.J., Zhu, J., Yang, M., Zhang, Z.Y., Tie, Y., Jiang, H., Sun, Z.X., and Zheng, X.F. (2006). A novel method to monitor the expression of microRNAs. Mol. Biotechnol. 32, 197-204.   DOI
27 Gim, J.-A., Ha, H.-S., Ahn, K., Kim, D.-S., and Kim, H.-S. (2014). Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 12, 261-267.   DOI
28 Gim, J.A., Hong, C.P., Kim, D.S., Moon, J.W., Choi, Y., Eo, J., Kwon, Y.J., Lee, J.R., Jung, Y.D., Bae, J.H., et al. (2015). Genome-wide analysis of DNA methylation before-and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells 38, 210-220.   DOI
29 Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632.   DOI
30 Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., and Down, T. (2002). The Ensembl genome database project. Nucleic Acids Res. 30, 38-41.   DOI
31 Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462-467.   DOI
32 Hutvagner, G. (2005). Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett. 579, 5850-5857.   DOI
33 Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420.   DOI
34 Jurka, J., Kapitonov, V.V., Klonowski, P., Walichiewicz, J., and Smit, A.F. (1996). Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha. Genetica 98, 235-247.   DOI
35 Kim, M.C., Lee, S.W., Ryu, D.Y., Cui, F.J., Bhak, J., and Kim, Y. (2014). Identification and characterization of microRNAs in normal equine tissues by next generation sequencing. PLoS One 9, e93662.   DOI
36 Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.   DOI
37 Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-73.   DOI
38 Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Kochert, K., Bouhlel, M.A., Richter, J., Soler, E., et al. (2010). Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571-579,   DOI
39 Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
40 Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., and Byrnes, E.J. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176.   DOI
41 Li, Y., Xie, J., Xu, X., Wang, J., Ao, F., Wan, Y., and Zhu, Y. (2013). MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-${\lambda}1$. Protein Cell 4, 130-141.   DOI
42 Liang, T., Guo, L., and Liu, C. (2012). Genome-wide analysis of mir- 548 gene family reveals evolutionary and functional implications. J. Biomed. Biotechnol. 2012, 679563.
43 Lund, E., and Dahlberg, J.E. (2006). Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59-66.   DOI
44 Nishimura, M., and Naito, S. (2005). Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol. Pharm. Bull. 28, 886-892.   DOI
45 Pace, J.K., 2nd., and Feschotte, C. (2007). The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422-432.   DOI
46 Nozawa, M., Miura, S., and Nei, M. (2010). Origins and evolution of microRNA genes in Drosophila species. Genome Biol. Evol. 2, 180-189.   DOI
47 Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y., and Seto, M. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095.
48 Ou-Yang, F., Luo, Q.-J., Zhang, Y., Richardson, C.R., Jiang, Y., and Rock, C.D. (2013). Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice. Funct. Integr. Genomics 13, 207-216.   DOI
49 Petersen, J.L., Mickelson, J.R., Rendahl, A.K., Valberg, S.J., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., et al. (2013). Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 9, e1003211.   DOI
50 Park, S.J., Kim, Y.H., Lee, S.R., Choe, S.H., Kim, M.J., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015). Gain of a new exon by a lineage-specific alu element-integration event in the BCS1L gene during primate evolution. Mol. Cells 38, 950-958.   DOI
51 Piriyapongsa, J., and Jordan, I.K. (2007). A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203.   DOI