• Title/Summary/Keyword: package materials

Search Result 623, Processing Time 0.028 seconds

An Experiment Study for RFID Attachment Standardization of Construction Materials (건설자재의 RFID 부착표준화를 위한 실험적 연구)

  • Han, Choong-Han
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.753-757
    • /
    • 2008
  • The objects of this study are to increase the efficiency and competitiveness for construction management and field supervision by using IT technology which is a trend of construction industry thesedays. Using RFID technology can play an important role to achieve the goal, but it is necessary to research a standard of using frequency, specific, protocol, package method and reading method because it is hard to apply RFID to physical, chemical, environmental specifics. In this study as a part of planning research to standardize, a limitation item Is conducted with RFID tag attached building materials, and RFID Tag goods which solve the restriction are produced to conduct a field application test. From the result, available reading distance is different according to physical and environmental specifics. Furthermore because the different application method and attaching method make a various management efficiency, the current management of construction materials is analyzed and applied to a construction field to provide to various limitation items and recovery plan.

  • PDF

Microstructural Charicteristics of Pb-free Solder Joints (무연솔더 접합부의 미세조직 특성)

  • Yu, A-Mi;Jang, Jae-Won;Kim, Mok-Soon;Lee, Jong-Hyun;Kim, Jun-Ki
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.82-82
    • /
    • 2010
  • 표면실장 공법을 통해 CSP 패키지를 보드에 실장 하는데 있어 무연솔더 접합부의 신뢰성에 영향을 미치는 인자 중 가장 중요한 것은 접합부에 형성되는 IMC (Intermetallic compound, 금속간화합물)인 것으로 알려져 있다. 접합부의 칩 부분에는 솔더와 칩의 UBM (Under bump metalization)이 접합하여 IMC가 형성되나, 보드 부분에는 솔더와 보드의 UBM 뿐만 아니라 그 사이에 솔더 페이스트가 함께 접합되어 IMC가 형성된다. 본 연구에서는 패키지의 신뢰성 연구를 위해 솔더 페이스트의 유무 및 두께에 따른 무연 솔더 접합부의 미세조직의 변화를 분석하였다. 본 실험에서는 Sn-3.0(Wt.%)Ag-0.5Cu 조성과 본 연구진에 의해 개발된 Sn-Ag-Cu-In 조성의 직경 $450{\mu}m$ 솔더 볼을 사용하였으며, 솔더 페이스트는 상용 Sn-3.0Ag-0.5Cu (ALPHA OM-325)를 사용하였다. 칩은 ENIG (Electroless nickel immersion gold) finish pad가 형성된 CSP (Chip scale package)를, 보드는 OSP (Organic solderability preservative)/Cu finish pad가 형성된 것을 사용하였다. 실험 방법은 보드를 솔더 페이스트 없이 플라즈마 처리 한 것, 솔더 페이스트를 $30{\mu}m$ 두께로 인쇄한 것, $120{\mu}m$의 두께로 인쇄한 것, 이렇게 3가지 조건으로 준비한 후, 솔더 볼이 bumping된 칩을 mounting하여, $242^{\circ}C$의 peak 온도 조건의 oven(1809UL, Heller)에서 reflow를 실시하여 패키지를 형성하였다. 이후 시편은 정밀 연마한 후, OM(Optical Microscopic)과 SEM(scanning electron microscope) 및 EDS(energy dispersive spectroscope)를 사용하여 솔더 접합부 IMC의 미세조직을 관찰, 분석하였다.

  • PDF

Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components (Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화)

  • Hong, Won-Sik;Kim, Whee-Sung;Song, Byeong-Suk;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

Technical Review of the IAEA Regulations for Transportation of Radioactive Materials and Major Revision in the 1996 IAEA Safety Standard Series No. ST-l (IAEA 방사성물질 안전운송규정에 대한 요약과 1996년도판 개정의 요점)

  • Yoon, Jeong-Hyoun;Kim, Chang-Lak;Cho, Gyu-Seong;Choi, Heui-Joo;Park, Joo-Wan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.197-210
    • /
    • 1998
  • Regulations for the safe transport of radioactive material published by IAEA Safety Standard Series ST-l is reviewed and summarized. Safety Series No.115(International standard of radiation protection and safety for ionizing radiation and radiation sources), which reflected the new recommendation of ICRP60 published in 1991, has been a important encouragement for IAEA to revise their safety series related to the transportation of radioactive materials. IAEA Safety, Standard Series No. ST-l is summarized by comparing IAEA Safety Series No.6 regarding radiation protection system and its implementation, technical standards of packages, concept of Q system and exemption of regulation. The IAEA regulations of transportation of radioactive materials is summarized from the viewpoint of radiation protection and safety assessment. Research on transportation system of radioactive waste is suggested as a further study.

  • PDF

A Perception of Dietitians for Using Imported Foods and Pro-environment Farm Products for Elementary School Foodservice Operations in Busan (수입 식재료 및 친환경 농산물 사용에 대한 부산지역 초등학교 영양사의 인식 조사)

  • Ryu, Mi-Jin;Seo, Jae-Su;Ryu, Eun-Sun
    • Journal of the Korean Dietetic Association
    • /
    • v.10 no.4
    • /
    • pp.452-466
    • /
    • 2004
  • The purpose of this study was to assess the use of food materials at elementary school in Busan area and provide school meal management with basic data to improvement of guideline. A survey was done by e-mail with a set of questionnaires, which was responeded by 122 dietitians in elementary school foodservice. The results were as follows; Sixty percent of the dietitians though to the general imported food materials had to use. Regarding mean score of using the imported food materials; safety was 2.12/5.00, freshness 2.48/5.00, sanitation 2.68/5.00, nutrition 2.73/5.00, preference 2.93/5.00, external form 3.09/5.00, package 3.12/5.00, and price 3.63/5.00. Thirty seven percent of the dietitians had purchase the pro-environment farm products(PEFPs) and 32.0% of them purchased those products for the students' health. But 52.4% could not purchase to the PEFPs because of expensive price. They had negative opinions about deficient supplying of PEFPs 4.51/5.00, too expensive price 4.34/5.00, and the truth or false in source of PEFPs 3.96/5.00. Most of them perceived that using the PEFPs had to apply the step by step. Among of them, 33.9% had the knowledge of PEFPs, but 16.4 of them did not know to the PEPPs. 57.4% of them hoped to purchase the food materials through a center of supporting school meal servcie(it called non-profit-making organizations).

  • PDF

Effect of Ion-beam Pre-treatment on the Interfacial Adhesion of Sputter-deposited Cu film on FR-4 Substrate (이온빔 전처리가 스퍼터 증착된 Cu 박막과 FR-4 기판 사이의 계면접착력에 미치는 영향)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Ki-Wook;Kim, Jae-Dong;Kim, Do-Geun;Lee, Gun-Hwan;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The effects of $Ar/O_2$ ion-beam pre-treatment conditions on the interfacial adhesion energy of sputterdeposited Cu thin film to FR-4 substrate were systematically investigated in order to understand the interfacial bonding mechanism for practical application to advanced chip-in-substrate package systems. Measured peel strength increases from $45.8{\pm}5.7g/mm$ to $61.3{\pm}2.4g/mm$ by $Ar/O_2$ ion-beam pre-treatment with anode voltage of 64 V. Interfacial bonding mechanism between sputter-deposited Cu film and FR-4 substrate seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical bonding intensity between carbon and oxygen at FR-4 surface increases due to $Ar/O_2$ ion-beam pretreatment, which seems to be related to the strong adhesion energy between sputter-deposited Cu film and FR-4 substrate.

Plasma Application Technology of FOWLP (Fan-out Wafer Level Packaging) Process (FOWLP(Fan-out Wafer Level Packaging) 공정의 플라즈마 응용 기술)

  • Se Yong Park;Seong Eui Lee;Hee Chul Lee;Sung Yong Kim;Nam Sun Park;Kyoung Min Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Recently, there has been an increasing demand for performance improvement and miniaturization in response to the growing variety of signals and power demands in many industries such as mobile, IoT, and automotive. As a result, there is a high demand for high-performance chips and advanced packaging technologies that can package such chips. In this context, the FOWLP process technology is a suitable technology, and this paper discusses the plasma application technologies that are being used and studied to improve the shortcomings of this process. The paper is divided into four parts, with an introduction and case studies for each of the plasma application technologies used in each part.

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Use of Hard Mask for Finer (<10 μm) Through Silicon Vias (TSVs) Etching

  • Choi, Somang;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.312-316
    • /
    • 2015
  • Through silicon via (TSV) technology holds the promise of chip-to-chip or chip-to-package interconnections for higher performance with reduced signal delay and power consumption. It includes high aspect ratio silicon etching, insulation liner deposition, and seamless metal filling. The desired etch profile should be straightforward, but high aspect ratio silicon etching is still a challenge. In this paper, we investigate the use of etch hard mask for finer TSVs etching to have clear definition of etched via pattern. Conventionally employed photoresist methods were initially evaluated as reference processes, and oxide and metal hard mask were investigated. We admit that pure metal mask is rarely employed in industry, but the etch result of metal mask support why hard mask are more realistic for finer TSV etching than conventional photoresist and oxide mask.

Aha, CST and CFD !

  • Kim, S.J.;Kim, M.K.;Moon, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.9-18
    • /
    • 2009
  • This paper presents the state of the art of computational structures technology(CST) and comparison of two computational mechanics - CST and CFD, to the CFD engineers. Classical mechanics is based on the five classical axioms which describe the motion and behaviors of the continuum materials like solid structures and fluids. Computational structures technology uses the finite element method to solve the governing equation, whereas finite volume method is generally used in CFD. A few famous commercial structural analysis programs and DIAMOND/IPSAP will be introduced. DIAMOND/IPSAP is the efficient parallel structural analysis package developed by our research team. DIAMOND/IPSAP shows the better performance than the commercial structural analysis software not only in the parallel computing environments but also in a single computer.

  • PDF