• Title/Summary/Keyword: pH dependent

Search Result 1,766, Processing Time 0.033 seconds

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Salvia miltiorrhiza Inhibits Tumor Cell Growth in Association with Rb Dephosphorylation through Up-regulation of p21 Via a p53-dependent Pathway

  • Chung, Jin;Chang, Jae-Eun;Son, Yong-Hae;Park, Hae-Ruyn;Lim, Suk Hwan;Oh, Yang-Hyo;Lee, Moo-Yeol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • Background: Salvia miltiorrhiza (SM), a traditional oriental medicine, has been reported to have anti-tumor properties, but its exact mechanism remains to be elucidated. In this study, we investigated several of the molecular events that occur in human breast carcinoma MCF-7 cells and human pulmonary adenocarcinoma A549 cells. Methods: For this purpose, we evaluated the growth-inhibitory effect of SM in association with the expressions of p53, p21, cyclin D1, and pRb, which are known to be involved in cell cycle arrest. The extent of thymidine incorporation was also examined to assess G1/S phase cell cycle arrest in both cells by $^3H$-thymidine incorporation. Results: Our results show that SM inhibits the growth and the proliferation of MCF-7 and A549 cells. Furthermore, we also observed increased expression of p21 via a p53-dependent pathway in both cell lines after treating with SM. In addition, treatment with SM for 24 hours caused the suppression of hyperphosphorylated retinoblastoma protein (pRb) expression and the dephosphorylation of pRb. Conclusion: These findings suggest that the growth inhibitory and the anti-proliferation effects of SM on MCF-7 cells and A549 cells are mediated via the decreased expression and dephosphorylation of pRB by p21 up-regulation in a p53-dependent manner. To the best of our knowledge, this study is the first to report upon the molecular mechanisms involved in SM-induced tumor cell growth inhibition.

Effect of Epididymal Fluid on In Vitro Maturation and Subsequent Sperm Penetration in Porcine Follicular Oocytes

  • Kim, Byung-Ki
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.125-131
    • /
    • 2009
  • The aim of this study is to investigate the effect of porcine epididymal fluid (pEF) on in vitro-maturation and subsequent fertilization of porcine follicular oocytes. Porcine cumulus-oocytes complexes retrieved from antral follicles were cultured in tissue culture medium (TCM)-l99 supplemented with pEF of different concentrations. At 48 h after culture, development of oocytes to germinal vesicle (GV) breakdown, metaphase I, anaphase-telophase I, and metaphase II were examined Significant (p<0.05) increase in the proportion of oocytes developed to MII stage was observed in oocytes cultured in pEF-containing TCM-l99 than in oocytes cultured in pEF-free TCM-199 (46.2% vs 16.7%), which was a dose-dependent manner. Subsequently, the proportion of monospermic fertilization were significantly (p<0.05) increased in oocytes cultured in the TCM supplemented with pEF than those cultured in pEF-free TCM-199 (51.0% vs 24.1%). In the second series of experiment, the percentage of MII oocytes was significantly (p<0.05) increased after exposure of oocytes to pEF during the first 22 h period of culture than after exposure of oocytes to pEF during the next 24 h of culture, while no significant difference in the percentage of monospermy was observed. The results of this study demonstrate that pEF contains at least enhancing component(s) for nuclear maturation.

Cadmium Inhibition of Renal Endosomal Acidification

  • Kim, Moo-Seong;Kim, Kyoung-Ryong;Ahn, Do-Whan;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • Chronic exposure to cadmium (Cd) results in an inhibition of protein endocytosis in the renal proximal tubule, leading to proteinuria. In order to gain insight into the mechanism by which Cd impairs the protein endocytosis, we investigated the effect of Cd on the acidification of renal cortical endocytotic vesicles (endosomes). The endosomal acidification was assessed by measuring the pH gradient-dependent fluorescence change, using acridine orange or FITC-dextran as a probe. In renal endosomes isolated from Cd-intoxicated rats, the $V_{max}$ of ATP-driven fluorescence quenching ($H^+-ATPase$ dependent intravesicular acidification) was significantly attenuated with no substantial changes in the apparent $K_m,$ indicating that the capacity of acidification was reduced. When endosomes from normal animals were directly exposed to free Cd in vitro, the $V_{max}$ was slightly reduced, whereas the $K_m$ was markedly increased, implying that the biochemical property of the $H^+-ATPase$ was altered by Cd. In endosomes exposed to free Cd in vitro, the rate of dissipation of the transmembrane pH gradient after $H^+-ATPase$ inhibition appeared to be significantly faster compared to that in normal endosomes, indicating that the $H^+-conductance$ of the membrane was increased by Cd. These results suggest that in long-term Cd-exposed animals, free Cd ions liberated in the proximal tubular cytoplasm by lysosomal degradation of cadmium-metallothionein complex (CdMT) may impair endosomal acidification 1) by reducing the $H^+-ATPase$ density in the endosomal membrane, 2) by suppressing the intrinsic $H^+-ATPase$ activity, and 3) possibly by increasing the membrane conductance to $H^+$ ion. Such effects of Cd could be responsible for the alterations of proximal tubular endocytotic activities, protein reabsorption and various transporter distributions observed in Cd-exposed cells and animals.

  • PDF

The Effect of Body Positioning on Physiologic Index in Patients with Unilateral Lung Disease (편측성 폐질환 환자의 체위변경이 생리적 지표에 미치는 영향)

  • Cho, Jee Yeon;Lee, Hyang Yeon
    • Korean Journal of Adult Nursing
    • /
    • v.12 no.1
    • /
    • pp.122-133
    • /
    • 2000
  • The purpose of this study was to identify the effect of body positioning on $PaO_2$, $SpO_2$, systolic blood pressure, diastolic blood pressure, pulse, and respiration(above all defined physiologic index), of patients with unilateral lung disease. The subjects for this study were eleven patients admitted to I.C.U. of K.H.M.C. with a diagnosis of unilateral lung disease confirmed by chest X-ray and the attending doctor, from January 30th. to April 20th. 1999. A quasi-experimental repeated-measures cross-over design was used to compare three body positions(semi-Fowler's, lateral decubitus with good lung dependent, and lateral decubitus with diseased lung dependent). Each subject spent 30 minutes in semi-Fowler's position and 2 hours in good lung dependent position and diseased lung dependent position. Starting in the semi-Fowler's position, then in the lateral position with the good lung dependent or the diseased lung dependent as assigned in random order. Thirty minutes after each positioning, arterial blood sample was analyzed. Measurements of all physiologic index were recorded at the specified intervals(0, 30, 60 90, and 120 minutes) in good lung dependent and diseased lung dependent position. Statistical comparison of $PaO_2$ value was done using the Wilcoxon Signed Rank Test, and Multivariate repeated-measures analysis of variance was performed to analyse the within-subject effect of two dependent position for 2 hours on the five dependent variables: (1) $PaO_2$ (2) $SpO_2$ (3) systolic blood pressure (4) diastolic blood pressure (5) pulse. The results obtained were as follows: 1. The $PaO_2$ value in the good lung dependent position was significantly higher than the $PaO_2$ value in the diseased lung dependent position(Z=-2.8451, p=.002). 2. The $PaO_2$ value in the good lung dependent position was significantly higher than the $PaO_2$ value in the semi-Fowler's position (Z=-2.6673, p=.003). 3. The difference between the $PaO_2$ value in the semi-Fowler's position and the $PaO_2$ value in the diseased lung dependent position was not significant(Z=-1.2448, p=.10). 4. There were no statistically significance in the trends of physiologic index in the good lung dependent position and the diseased lung dependent position. From the results, it may be concluded that the good lung dependent position is the most effective position for patients with unilateral lung disease that improve oxygenation. Identification of positioning over time may be need further studies.

  • PDF

Down-regulation of COX-2 and hTERT Expression by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells (상황을 이용한 한의학적 보건기능 개선제에 의한 인체폐암세포의 증식억제에 관한 연구)

  • Park Cheol;Lee Yong Tae;Jeong Young Kee;Choi Byung Tae;Lee Sang Hyeon;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.500-506
    • /
    • 2004
  • The objective of the present study was to investigate the effects of aqueous extract from the healthful decoction utilizing Phellinus linteus (HDPL) on the growth of human lung carcinoma A549 cells. HDPL treatment declined the cell viability of A549 cells in a concentration-dependent manner and the anti-proliferative effects by HDPL treatment were associated with morphological changes such as membrane shrinking and cell rounding up. HDPL treatment did not affect the distribution of the cell cycle. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1 in HDPL-treated A549 cells were remained unchanged. However, HDPL treatment inhibited the expression of cyclooxygenase-2 (COX-2) mRNA and protein in a concentration-dependent fashion. Additionally, the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by HDPL treatment. Taken together, these findings suggest that HDPL-induced inhibition of human lung cancer cell proliferation is associated with the inhibition of several major growth regulatory gene products, such as COX-2 and hTERT, and HDPL may have therapeutic potential in human lung cancer.

Physiochemical Properties, and Antioxidative and Alcohol-metabolizing Enzyme Activities of Nectarine Vinegar (천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성)

  • Jung, Kyung Im;Jung, Han Nah;Ha, Na Yeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1193-1200
    • /
    • 2018
  • This study investigated the physiochemical properties, antioxidative, nitrite-scavenging, and alcohol metabolism enzyme activities of nectarine vinegar prepared by a traditional fermentation method. The pH of nectarine vinegar was 3.70, the sugar content was $8.87^{\circ}Brix$, and the total acidity was 6.29%. Among organic acids detected, acetic acid was highest at 32.42 mg/ml, followed by lactic acid, malic acid, and succinic acid. Total phenol content of the nectarine vinegar was $121.84{\mu}g$ tannic acid equivalents (TAE)/100 ml. The antioxidative effects of muskmelon vinegar were measured using 1,1-Diphenyl2-picrylhydrazy (DPPH) radical-scavenging activity and superoxide dismutase (SOD) assay. DPPH of nectarine vinegar was increased in a dose-dependent manner, which was 84.47% at 40% concentration. SOD activity was increased in a dose-dependent manner, which was 89.06% at 60% concentration. Nitric scavenging activities of nectarine vinegar were 94.17%, 76.91%, and 20.21% at pH values 1.2, 3.0, and 6.0 at 100% concentration, respectively. The effects of nectarine vinegar on alcohol-metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities of nectarine vinegar were increased in a dose-dependent manner, which were 153.61% and 178.20 % at 60% concentration, respectively. These results suggest that nectarine vinegar has great potential as a resource for high quality functional health beverages.

Nitrite Scavenging and Alcohol Metabolizing Activities of Hot Water Extract from Makgeoly and Its Angiotensin Converting Enzyme Inhibitory Effect (막걸리 열수 추출물의 아질산염 소거능, 알코올 분해능 및 angiotensin converting enzyme 저해 효과)

  • Cho, Eun-Kyung;Kim, Hee-Yeon;Byeon, Hyeon-Ji;Kim, Soo-Won;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.768-774
    • /
    • 2010
  • In this study, we investigated the antioxidant activities, alcohol metabolizing activities, nitrite scavenging ability, angiotensin converting enzyme (ACE), and elastase inhibitory effects of hot water extract from Makgeoly (HWM). Antioxidant activities were measured by using 2,2.diphenyl.1.picryl.hydrazyl (DPPH) free radical scavenging activity and SOD (superoxide dismutase).like activity. The DPPH radical scavenging activity and SOD.like activity of HWM were remarkably increased in a dose.dependent manner and were 48.0% and 98.7% at 10 mg/ml, respectively. To determine the influence of HWM on alcohol metabolizing activity, the generating activities of reduced.nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were measured. The facilitating rates of ADH and ALDH activity by HWM were remarkably increased in a dose.dependent manner and were 70.2% and 64.1% at 10 mg/ml, respectively. The inhibitory activity against angiotensin converting enzyme (ACE) of HWM was increased in a dose.dependent manner and was 74.2% at 10 mg/ml. The nitrite scavenging ability of HWM showed the most remarkable effect at pH 1.2 and 2 mg/ml. These results indicated that HWM may have valuable biological properties owing to their antioxidant activities, ADH and ALDH activity, nitrite scavenging ability, and ACE inhibitory activity.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 증식에 미치는 삼기보폐탕의 영향 비교)

  • Heo, Man-Kyu;Park, Cheol;Choi, Young-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.973-981
    • /
    • 2007
  • In the present study, we investigated the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines. We found that exposure of A549 cells to SGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, however SGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. SGBPT treatment did not induce the cell cycle arrest in both cell lines, however the frequency of sub-G1 population was concentration-dependently increased by SGBPT treatment in A549 cells. SGBPT treatment partially induced the expression of tumor suppressor p53 in A549 cells and the expression of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) was markedly increased in both transcriptional and translational levels in A549 cells. The up-regulation of p21 by SGBPT occurred in a similar a concentration dependent manner to that observed with the inhibition of cell viability and induction of sub-G1 population of the cell cycle. However SGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), inducible nitric oxide synthease (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 as well as NCI-H460 cells. Taken together, these findings suggested that SGBPT-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the induction of p21 and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

Effect of Achyrantis Radixs on Rat Chondrocyte Oxidative Stress and Its Signal Transduction (우슬이 산화적 스트레스와 관련한 세포내 신호전달계에 미치는 영향)

  • Kim, Eun-Jung;Chung, Hun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.841-848
    • /
    • 2008
  • Archyranthes radix has had extensive therapeutic application, and there has been increasing interest in its biological effects. However, the biochemical effects of Archyranthes radix on chondrocyte oxidative stress have never been systematically investigated. Therefore, we investigated the effects of Acyranthes radix on role of MAPK signal transduction pathway on oxidative stress induced by hydrogen peroxide in rat articular chondrocytes. The statistically significant inhibitory action of Archyranthes radix on cell proliferation was observed at above $5{\mu}g/m{\ell}$. Next, we examined the time-dependent effect of $5{\mu}g/m{\ell}$ Archyranthes radix on cell proliferaion. Archyranthes radix significantly inhibited cell proliferation from 12 hr after treatment (P<0.05). $H_2O_2$, resulted in a time- and dose-dependent cell proliferation, which was largely attributed to oxidative damage. Acyranthes radix and $H_2O_2$ treatment caused marked sustained activation of phosphorylation of ERK1/2. Moreover, the synergistic phosphorylation of p44/42 MAPK by $H_2O_2$ and Archyranthes radix was selectively inhibited by PD 98059, a p44/42 MAPK inhibitor. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the $H_2O_2$-induced inhibition of cell proliferation in the rat chondrocyte is mediated through a modulation of the Archyranthes radix signaling pathway, promoting further phosphorylation of p44/42 MAPK, indicating a potentially important role in cartilage repair and in the treatment of osteoarthritic cartilage.