Effect of Achyrantis Radixs on Rat Chondrocyte Oxidative Stress and Its Signal Transduction

우슬이 산화적 스트레스와 관련한 세포내 신호전달계에 미치는 영향

  • Kim, Eun-Jung (Department of Physical Therapy of Dongshin University) ;
  • Chung, Hun-Woo (Department of Oriental Medicine of Dongshin University) ;
  • Kim, Gye-Yeop (Department of Physical Therapy of Dongshin University)
  • Published : 2008.08.25

Abstract

Archyranthes radix has had extensive therapeutic application, and there has been increasing interest in its biological effects. However, the biochemical effects of Archyranthes radix on chondrocyte oxidative stress have never been systematically investigated. Therefore, we investigated the effects of Acyranthes radix on role of MAPK signal transduction pathway on oxidative stress induced by hydrogen peroxide in rat articular chondrocytes. The statistically significant inhibitory action of Archyranthes radix on cell proliferation was observed at above $5{\mu}g/m{\ell}$. Next, we examined the time-dependent effect of $5{\mu}g/m{\ell}$ Archyranthes radix on cell proliferaion. Archyranthes radix significantly inhibited cell proliferation from 12 hr after treatment (P<0.05). $H_2O_2$, resulted in a time- and dose-dependent cell proliferation, which was largely attributed to oxidative damage. Acyranthes radix and $H_2O_2$ treatment caused marked sustained activation of phosphorylation of ERK1/2. Moreover, the synergistic phosphorylation of p44/42 MAPK by $H_2O_2$ and Archyranthes radix was selectively inhibited by PD 98059, a p44/42 MAPK inhibitor. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the $H_2O_2$-induced inhibition of cell proliferation in the rat chondrocyte is mediated through a modulation of the Archyranthes radix signaling pathway, promoting further phosphorylation of p44/42 MAPK, indicating a potentially important role in cartilage repair and in the treatment of osteoarthritic cartilage.

Keywords

References

  1. Archer, C.W., Morrison, H., Pitsillides, A.A. Cellular aspects of the development of diarthodial joints and articular cartilage. J Anat. 184: 447-456, 1994
  2. Mitrovic, D., Quintero, M., Stankovic, A., Ryckewaert, A. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest 49(3):309-316, 1983 https://doi.org/10.1038/jid.1967.46
  3. Gardner, D.L. Problems and paradigms in joint pathology. J Anat. 184: 1749-1755, 1994
  4. McCored, J.M. The evolution of free radicals and oxidative stress. Am J Med. 108: 652-659, 2000 https://doi.org/10.1016/S0002-9343(00)00412-5
  5. Lee, W.C., Choi, C.H., Cha, S.H., Oh, H.L., Kim, Y.K. Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res. 30(2):263-270, 2005 https://doi.org/10.1007/s11064-005-2449-y
  6. Galaris, D., Evangelou, A. The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol. 42: 93-103, 2002 https://doi.org/10.1016/S1040-8428(01)00212-8
  7. Balaban, R.S., Nemoto, S., Finkel, T. Mitochondria, oxidants, and aging. Cell. 120(4):483-495, 2005 https://doi.org/10.1016/j.cell.2005.02.001
  8. Galaris, D., Barbouti, A., Korantzopoulos, P. Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des. 12: 2875-2890, 2006 https://doi.org/10.2174/138161206777947614
  9. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97: 1634-1658, 2006 https://doi.org/10.1111/j.1471-4159.2006.03907.x
  10. Rhee, S.G. Cell signaling: H2O2, a necessary evil for cell signaling. Science. 312(5782):1882-1883, 2006 https://doi.org/10.1126/science.1130481
  11. Stone, J.R. Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signaling 8: 243-270, 2006 https://doi.org/10.1089/ars.2006.8.243
  12. Jin, N., Hatton, N.D., Harrington, M.A., Xia, X., Larsen, S.H., Rhoades, R.A. $H_2O_2$-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosine kinase in aortic smooth muscle cells. Free Radic Biol Med. 29: 736-746, 2000 https://doi.org/10.1016/S0891-5849(00)00376-2
  13. Go, Y.M., Gipp, J.J., Mulcahy, R.T., Jones, D.P. $H_2O_2$-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. J Biol Chem. 279: 5837-5845, 2004 https://doi.org/10.1074/jbc.M307547200
  14. Vilhardt, F., van Deurs, B. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J. 23: 739-748, 2004 https://doi.org/10.1038/sj.emboj.7600066
  15. Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., Woo, H.A. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 17(2):183-189, 2005 https://doi.org/10.1016/j.ceb.2005.02.004
  16. Tenopoulou, M., Doulias, P.T., Barbouti, A., Brunk, U.T., Galaris, D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J. 387:703-710, 2005 https://doi.org/10.1042/BJ20041650
  17. Geilen, C.C., Wieprecht, M., Orfanos, C.E. The mitogen-activated protein kinases system (MAP kinase cascade): its role in skin signal transduction. J Dermatol Sci. 12(3):255-262, 1996 https://doi.org/10.1016/0923-1811(95)00481-5
  18. Chang, L., Karin, M. Mammalian MAP kinase signalling cascades. Nature 410(6824):37-40, 2001 https://doi.org/10.1038/35065000
  19. Cano, E., Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 20(3):117-122, 1995 https://doi.org/10.1016/S0968-0004(00)88978-1
  20. Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., Yancopoulos, G.D. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65(4):663-675, 1991 https://doi.org/10.1016/0092-8674(91)90098-J
  21. Khanna, A.K., Chandra, A., Singh, C., Srivastava, A.K., Kapoor, N. Hypolipidemic activity of Achyranthes aspera Linn in normal and triton induced hyperlipidamic rats. J Exp Biol. 30(2):128-130, 1992
  22. Desta, B. Ethiopian traditional herbal drugs. Part II: Antimicrobial activity of 63 medicinal plants. J Ethnopharmacol. 39(2):129-139, 1993 https://doi.org/10.1016/0378-8741(93)90028-4
  23. Tian, G.Y., Li, S.T., Song, M.L., Zheng, M.S., Li, W. Synthesis of Achyranthes bidentata polysaccharide sulfate and its antivirus activity. Yao Xue Xue Bao. 30: 107-111, 1995
  24. Lu, T., Mao, C., Zhang, L., Xu, W. The research on analgestic and anti-inflammatory action of different processed products of Achyranthes bidentata. Zhong Yao Cae. 20: 507-509, 1997
  25. Ratra, P.S. Alkaloid in two species of Achyranthes at different stages of their growth. Trends Sci Life 4: 81-85, 1979
  26. Seshatri, V., Batta, A.K., Rangaswami, S. Structure of two new saponins from Achyranthes aspera. Indian J Chem Ser. 20: 773-775, 1981
  27. Raman, M.H., Faroque, A.S.M. Studies on the antibacterial properties of Achyranthes aspera stem. Fitoterapia LXII, pp 92-93, 1996
  28. Takemoto, T., Ogawa, S., Nishimoto, N., Hirayama, H., Taniguchi S. Studies on the constituents of Achyranthes radix. Ⅶ. The insect-moulting substances in Achyranthes and Cyathula genera "supplement". Yakugaku Zasshi 88(10):1293-1297, 1968 https://doi.org/10.1248/yakushi1947.88.10_1293
  29. Roehm, N.W., Rodgers, G.H., Hatfield S.M., Glasebrook, A.L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 142(2):257-265, 1991 https://doi.org/10.1016/0022-1759(91)90114-U
  30. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 48-254, 1976
  31. Gao, X.Y., Wang, D.W., Li, F.M. Determination of ecdysterone in Achyranthes bidentata Bl. and its activity promoting proliferation of osteoblast-like cells. Yao Xue Xue Bao. 35(11):868-870, 2000
  32. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97: 1634-1658, 2006 https://doi.org/10.1111/j.1471-4159.2006.03907.x
  33. DiPietrantonio, A.M., Hsieh, T., Wu, J.M. Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochem Biophys Res Commun. 255(2):477-482, 1999 https://doi.org/10.1006/bbrc.1999.0208
  34. Lee, W.C., Choi, C.H., Cha, S.H., Oh, H.L., Kim, Y.K. Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res. 30(2):263-270, 2005 https://doi.org/10.1007/s11064-005-2449-y
  35. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270(5240):1326-1331, 1995 https://doi.org/10.1126/science.270.5240.1326
  36. Wang, X., Martindale, J.L., Liu, Y., Holbrook, N.J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J. 15(333):291-300, 1998
  37. Stadheim, T.A., Kucera, G.L. Extracellular signal-regulated kinase (ERK) activity is required for TPA-mediated inhibition of drug-induced apoptosis. Biochem Biophys Res Commun. 245(1):266-271, 1998 https://doi.org/10.1006/bbrc.1998.8410
  38. Asada, S., Fukuda, K., Nishisaka, F., Matsukawa, M., Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 50(1):19-23, 2001 https://doi.org/10.1007/s000110050719
  39. Ishikawa, Y., Kitamura, M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int. 58(3):1078-1087, 2000 https://doi.org/10.1046/j.1523-1755.2000.00265.x
  40. Kang, H.J., Soh, Y., Kim, M.S., Lee, E.J., Surh, Y.J., Kim, H.R., Kim, S.H., Moon A. Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells. Int J Cancer. 103(4):475-482, 2003 https://doi.org/10.1002/ijc.10855
  41. Jung, M.Y., Kwon, S.K., Moon, A. Chemopreventive allylthiopyridazine derivatives induce apoptosis in SK-Hep-1 hepatocarcinoma cells through a caspase-3-dependent mechanism. Eur J Cancer. 37(16):2104-2110, 2001 https://doi.org/10.1016/S0959-8049(01)00242-8
  42. Wattenberg, L.W. Inhibition of carcinogenesis by minor anutrient constituents of the diet. Proc Nutr Soc. 49(2):173-183, 1990
  43. Kim, M.S., Kang, H.J., Moon, A. Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm Res. 24(4):349-354, 2001 https://doi.org/10.1007/BF02975105
  44. Kim, H.A., Lee, Y.J., Seong, S.C., Choe, K.W., Song, Y.W. Apoptotic chondrocyte death in human osteoarthritis. J Rheumatol. 27: 455-462, 2000
  45. Takahashi, T., Ogawa, Y., Kitaoka, K., Tani, T., Uemura, Y., Taguchi, H., Kobayashi, T., Seguchi, H., Yamamoto, H., Yoshida, S. Selective COX-2 inhibitor regulates the MAP kinase signaling pathway in human osteoarthritic chondrocytes after induction of nitric oxide. Int J Mol Med. 15(2):213-219, 2005
  46. Wang, H., Wang, Z., Chen, J., Wu, J. Apoptosis induced by NO via phosphorylation of p38 MAPK that stimulates NF-kappaB, p53 and caspase-3 activation in rabbit articular chondrocytes. Cell Biol Int. 31(9):1027-1035, 2007 https://doi.org/10.1016/j.cellbi.2007.03.017