• Title/Summary/Keyword: p44/p42 MAP Kinase

Search Result 9, Processing Time 0.028 seconds

Synergistic Effect of Dexamethasone and Prolactin on VEGF Expression in Bovine Mammary Epithelial Cells via p44/p42 MAP Kinase

  • Nakajima, Kei-Ichi;Nakamura, Masato;Ishisaki, Akira;Kozakai, Takaharu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.788-795
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis under various physiological and pathological conditions. We found that the VEGF isoforms VEGF120, VEGF164, and VEGF188 were expressed in the bovine mammary gland and bovine mammary epithelial cells (bMECs). Expression of VEGF in the mammary gland was significantly higher during the lactation period than during the dry period. Although dexamethasone or prolactin alone had little effect on the expression of VEGF, that in dexamethasone-treated cells was significantly induced after additional treatment with prolactin. Furthermore, the VEGF expression induced by the combination of dexamethasone and prolactin was reduced by PD98059 in a dose-dependent manner. This combination also stimulated the phosphorylation of p44/p42 MAP kinase in these cells. These results strongly suggest that the combination of dexamethasone and prolactin stimulates VEGF expression in bMECs via p44/p42 MAP kinase.

Effect of EGCG on Expression of Neurogenin 3 via the MAP Kinase Signaling Pathway in AR42J Cells, a Rat Pancreatic Tumor Cell Line (녹차 카테킨, Epigallocathechin Gallate (EGCG)의 흰쥐췌장종양 선 세포 AR42J의 MAP Kinase 세포 신호전달 기전을 통한 Neurogenin 3 발현에 미치는 영향)

  • Kim, Sung-Ok;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.44 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • Epigallocatechin gallate (EGCG), or epigallocatechin 3-gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin. EGCG may be therapeutic for many disorders including diabetics and some types of cancer. However it is unknown whether EGCG can induce transdifferentiation of pancreatic cells in pancreatitis. The aim of this study was to investigate the effects of EGCG on the expression of pancreatic regenerating related markers in pancreatic AR42J cells, a model of pancreatic progenitor cells. AR42J cells, differentiated with betacellulin and activin A, were cultured with/without EGCG in a time-dependent manner. Cell growth rate, levels of mRNA, and protein expression were examined with the MTT assay, quantitative PCR, and Western blots, respectively. The results showed that AR42J cell growth rates were inhibited by EGCG in a dose-dependent manner. mRNA and protein expression of amylase, insulin and neurogenin 3 (ngn 3) increased in AR42J cells treated with EGCG. Additionally, we demonstrated that the signal transduction pathway of mitogen-activated protein (MAP) kinase is active in EGCG-treated AR42J cells. ERK and JNK phosphorylation decreased in cells treated with EGCG but not p38 phosphorylation. Activation of the p38 MAP kinase pathway was confirmed by specific MAP kinase pathways inhibitors: U0126 for ERK, SP600126 for JNK, and SB203580 for p38. Activated p38 phosphorylation was inhibited by the specific p38 inhibitor SB203580 but p38 phosphorylation was inhibited with increased EGCG treatment. The ERK and JNK MAP kinase pathways were not affected by EGCG treatment. Although further studies are needed, these results suggest that EGCG affects the induction of pancreatic cell regeneration by increasing the ngn 3 protein and mRNA expression and activating the p38 MAP kinase pathway.

Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus (핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화)

  • 김윤석;김소영;김태우
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.175-185
    • /
    • 1996
  • The mitogen-activated protein(MAP) kinase signal transduction pathway represents an important mechanism by which mitogen, such as serum and PMA, regulate cell proliferation and differentiation. Target substrates of the MAP kinase are located within several compartments containing plasma membranes and nucleus. We now report that serum addition induces proliferation of the P388 murine leukemia cell, but PMA does not, while both serum and PMA treatment cause translocation of the MAP kinase, mainly p42$^{mapk}$ isoform, from cytosol into the nucleus, which was monitored by immunoblot analysis using polyclonal anti-ERK1 antibodies. We investigated whether the MAP kinase was capable of phosphorylating c-Jun protein and GST-fusion proteins, the P562$^{kk}$N-terminal peptides (1-77 or 1-123 domain) of the T cell tyrosine kinase, using the partially purified MAP kinase by SP-sephadex C-50, phenyl superose and Mono Q column chromatography. We found that the partially purified MAP kinase was able to phosphorylate c-Jun protein and the GST-fusion protein expressed using E.coli DH5$\alpha$ which is transformed with pGEX-3Xb plasmid vector carrying of p562$^{kk}$N-terminal peptide-encoding DNA. These results imply that tyrosine kinase receptor/Ras/Raf/MAP kinase pathway is a major mechanism for mitogen-induced cell proliferation in P388 murine leukemia cell and that the various MAP kinase isoforms may have their own target substrates located in distinct subcellular compartments.

  • PDF

Purification and Characterization of Mitogen -Activated Protein (MAP) Kinase from Mammalian Tissue Cells (동물 조직세포로부터 Mitogen-activated Protein (MAP) Kinase의 분리 및 성격규명)

  • 김태우;정동주;김윤석
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1996
  • MAP kinases are a family of serine/threonine specific protein kinases becoming activated in response to different proliferative stimuli by phosphorylation at both threonine and tyrosine residue. Present study shows that MAP kinase was purified from P388 murine leukema cells by SP sephadex C-50, phenyl superose and Mono Q column chromatography and identified with anti-ERKl antibody by western blotting. Immnublotting analysis to the crude extract of P388 cell lysate shows 44 kD and other minor bands but partial purified fraction eluted from phenyl supherose column have 44kD and 66 kD isoform. Subcloned GST-fusion protein from N-terminal of $p56^{kk}$ was tested as a substrate for MAP kinase phosphorylation. It was showed that the wild type and mutant forms(S42A) were fully phosporylated by purified MAP kinase fraction as com-pare with the other mutant form(S59A). This finding suggest that those GST-fusion proteins may be used as substrate for the in vitro test of MAP kinase.

  • PDF

Esophagitis and IL-1$\beta$-induced alteration of MAP kinase activity in esophageal smooth muscle

  • Lee, Tai-Sang;Min, Young-Sil;Choi, Tae-Sik;Sim, Sang-Soo;Shin, Yong-Kyoo;Lee, Moo-Yeol;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.117.1-117.1
    • /
    • 2003
  • We investigated whether experimental esophagitis and IL-1$\beta$ could induce the activation of MAP kinases in esophageal smooth muscle. With two models of experimental esophagitis, we assessed the activity of p38 MAP kinase, p44/42 MAP kinase and JNK. In feline acute experimental esophagitis, immunoblotting of normal and esophagitis-induced smooth muscle with each types of MAP kinase antibodies revealed the slight increase of phosphorylated form of p38 MAP kinase, especially in membrane fraction. (omitted)

  • PDF

MAP Kinase is Activated dring the Maturation of Porcine Oocytes

  • Chung, Ki-Hwa;Kim, Chul-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1069-1075
    • /
    • 2004
  • In an attempt to evaluate the function of MAP kinase in porcine oocytes and to develop a method of the assessment of its activity, myelin basic protein (MBP) was used as a substrate to detect the MAP kinase activity of porcine oocytes which had undergone maturation in vitro. The existence of MAP kinase and MAP kinase kinase (MAPKK) was verified in immature porcine germinal vesicle (GV) oocytes at 0 h culture via Western blotting. Porcine oocytes exhibited a low level of MAP kinase activity during the first 20 h of culture, which increased at 25 h, during which time a breakdown in the nuclear membrane occurred. Significantly higher increases (p<0.05) of MAP kinase activity were detected at 30 h of culture. Using the gel phosphorylation method, MBP was phosphorylated at two positions corresponding to mammalian MAP kinase-extracellular signal-regulated kinase (ERK 1) (44 kDa) and ERK 2 (42 kDa). The absolute levels of those proteins did not increase during 40 h of culture, suggesting that the detected increase in MAP kinase activity was the result of phosphorylation rather than changes in the total amount of protein. MAPKK and MAP kinase were dephosphorylated in first-stage (MI) meiotic oocytes by the addition of cycloheximide, a protein synthesis inhibitor. These results of this study indicate that the MAP kinase cascade does exists in porcine oocytes and that its activation leads to oocyte maturation.

Activation of MAP Kinase during Maturation in Porcine Ooctyes (돼지 미성숙란의 체외배양시 MAP Kinase의 활성)

  • 장규태;박미령;윤창현
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.265-276
    • /
    • 1998
  • In an attempt to evaluate the function of MAP kinase of porcine oocytes and to develop a method of assessment for kinase activity, we used MBP as a substrate to detect the MAP kinase activity of porcine oocytes matured in in vitro. The MAP kinase which had lower activity during the first 20 hours of culture started to show an increased amount of activity at 25 hours at which a collapse in nuclear membrane was induced. Significant (P<0.05) a, pp.ared at 30 hours of being cultured. The gel phosphorylation method, MBP which has been known to be a substrate for kinase such as cdc2 kinase, was phosphorylated at two positions corresponding to ERK 1 (44kDa) and ERK2 (42 kDa) which are known as mammalian MAP kinase. The existence of MARKK and MAP kinase were identified with western blotting at 0 hour culture of immature GV oocytes. The amount of those proteins did not increase during 40 hours of culture, which suggest that the increase of MAP kinase activity was caused by phosphorylaton rather than due to change in protein amount. MAPKK and MAP kinase were shown to be dephosporylated with deactivated at M 1 stage by inhibition of protein synthesis with cycloheximide added at the strat following the cultrue. We have reulsts that indicate the existedence of MAP kinase cascade which was activated simultaneously with start of porcine oocyte maturation (GVBD).

  • PDF

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.